Stationary Emissions and Control

Representative stationary sources

Coal-fired P/Ps

Oil-fired P/Ps

Natural gas-fired P/Ps

Steel making plants

Chemical plants

Cement plants

Waste incinerators

An example of stationary source controls

Introduction to NO_x Emissions and Control

NOx control technologies

DAEGU UNIVERSITY

Mechanism forming NOx in fuels combustion

Nitrogen oxides	Regions of formation	Mechanism/ Reaction	Dependent Mainly on
Thermal NO _x (Zeldovich NO _x)	FlamesAfter burnerAll kinds of fuel	 With an excess oxygen: O + N₂ = NO + N N + O₂ = NO + O 	 Concentration of O atoms from O₂ Residence time (T_{flame} > 1300°C)
		Under fuel-rich conditions:N + OH = NO + H	, name
Prompt NO _x (Fenimore NO _x)	FlamesAll kinds of fuel	• CN + H ₂ = HCN + H • CN + H ₂ O = HCN + OH • CH + N ₂ = HCN + N	 Concentration of O atoms from O₂ O₂ concentration fed
Fuel NO _x	FlamesCoals, heavy oils	• via CN-compounds	N concentrationResidence time

- Peak TEMPERATUREs at flame regions
- **Combustion control measures:** Residence **TIME** at the peak temperatures
 - Feed air TURBULANCE associated with O₂ conc.

DeNOx SCR technologies

NH₃-SCR deNOx processes

- © Commercially-proven process

 (first installed in the late 1970s, Japan)
- High DeNO_x efficiency even in commercially-available scales
- Relatively expensive
- NH₃ slip
- Highly corrosive
- Relatively delicate feed system of NH₃
- Formation of ammonium salts

Urea-SCR deNOx processes

- High DeNO_x activity
- Non-toxic solid-phase reductant
- Easier handling, transportation and storage
- Applicable to stationary and mobile sources (Power plants and ships)
- Diesel engine-equipped heavy duty vehicles
- Difficulty in homogeneously feeding urea
- NH₃ slip
- Infrastructure of urea supply

HC-SCR deNOx processes

- New emerging technology
- □ DeNOx reaction w/o an additional reductant
- ☑ Lean-burn gasoline engine (AFR = 18 ~ 22)Gas turbineDiesel engine
- Relatively low DeNOx performances
- Precursors for urban photochemical smog reaction

NH₃-SCR DeNO_x Technology

NH₃-SCR DeNOx reactions

NO reduction reactions

$$6NO + 4NH_3 \longrightarrow 5N_2 + 6H_2O$$
 (1st priority)
 $6NO_2 + 8NH_3 \longrightarrow 7N_2 + 12H_2O$ (Undesired)
 $4NO + 4NH_3 + O_2 \longrightarrow 4N_2 + 6H_2O$ (2nd priority)

™ NH₃ oxidation reactions

$$4NH_{3} + 3O_{2} \longrightarrow 2N_{2} + 6H_{2}O$$

$$4NH_{3} + 4O_{2} \longrightarrow 2N_{2} + 6H_{2}O$$

$$4NH_{3} + 5O_{2} \longrightarrow 4NO + 6H_{2}O$$

$$4NH_{3} + 7O_{2} \longrightarrow 4NO_{2} + 6H_{2}O$$

Side reactions

$$2NH_3 + H_2O + 2NO_2 \longrightarrow NH_4NO_3 + NH_4NO_2$$

$$2SO_2 + O_2 \longrightarrow 2SO_3$$

$$2NH_3 + SO_3 + H_2O \longrightarrow (NH_4)_2SO_4$$

Representative commercial deNOx SCR catalysts

✓ Noble metals-based catalysts

Pt, Ru, etc

[★] V₂O₅/TiO₂-based catalysts (first patented by Engelhard Corp., and first commercialized by IHI Corp., Japan)

Additives: WO₃, MoO₃, BaO, CaO, etc

✓ Cu- and Fe-zeolite catalysts (developed in USA and FRG)

Prevention of an immediate increase in NH₃ slip when being overdosed

√ Fe₂O₃-based catalysts (developed in FRG)

Iron oxide particles with thin crystalline surface cover of iron phosphate; can be mixed with chromic oxide; can be melted along with normal iron at a steel plant

Typical behaviors in activity vs. temperature

Criteria that determine which types of catalyst should be used:

- Flue gas temperatures
- NO_x reduction efficiencies required
- Acceptable NH₃ slip
- Permissible oxidation of SO₂
- Concentration of pollutants in the inlet flue gases
- Homogeneity of a flue gas flow

A: Pt-based catalysts

B: Modified Pt-based catalysts

C: V₂O₅/TiO₂-based catalysts

D: Metal-exchanged zeolites catalysts

Common shapes of deNOx SCR catalysts

Corrugates

Honeycombs

Flue gas flow designs in deNOx SCR processes

DeNOx process configuration

High dust and tail-gas systems

Stationary VOCs Emissions and Control

Representative deVOCs applications

- Solvent utilization facilities
- Degreasing and solvent washing processes
- Can, paper and fabric coatings chemicals
- Manufacture of organic chemicals (cumene, caprolactam, maleic anhydride, etc)
- Plywood manufacturing
- Tire and rubber processing and production
- Fish meal processing
- Offset printing
- Evaporants from waste water treatment plants
- Volatiles from urine
- Automotive exhaust
- Evaporants from oil stations and storages
- Asphalt production and blowing
- Miscellaneous

Estimates of VOCs emissions and their categories

- Remaining sources controls:
 - Recovery and reuse as a feedstock
 - Use of 2nd fuels
 - Suitable reduction processes

- 1: Aliphatic HCs
- 2: Aromatic HCs
- 3: Halogenated HCs
- 4: Ketons and aldehydes
- 5: Alcohols, ethers and phenols
- 6: Others

DeVOCs technologies and system designs

- 1: Thermal oxidation
- 2: Catalytic oxidation
- 3: Adsorption
- 4: Absorption
- 5: Process heaters
- 6: Flares
- 7: Biofiltration
- 8: Others

Representative deVOCs catalysts

- Pt/Al₂O₃ washcoated on honeycombs
- Pd/metal meshs or honeycombs
- Hopcalites (amorphous CuMn₂O₄)
- TiO₂-coated monoliths
- Supported and unsupported NiO
- V₂O₅-promoted TiO₂/monoliths
- Multi-components (TiO₂/V₂O₅/WO₃/SnO₂/Pt)
- Miscellaneous

Stationary and Mobile N₂O Emissions and Control

Which gases result in global warming

- Primary green house gases (GHGs):
 - Carbon dioxide (CO₂)
 - Nitrous oxide (N₂O)
 - Methane (CH₄)
 - Fluorinated gases, chlorofluorocarbons, particulates, clouds
- All fossil fuels contain carbon and when burned release CO₂ into the atmosphere.
- Combustion of fuels also release emissions of N₂O and CH₄ as well as criteria pollutants.

GHG	Global warming potential (GWP)	
CO ₂	1	
CH ₄	21	
N ₂ O	310	
HFCs	1,300	
PFCs	7,000	
SF ₆	23,900	

• CO₂, N₂O and CH₄ are the primary greenhouse gas emissions responsible for global warming.

N₂O emission sources

Source	Emissions (Mt/y)	Contribution (%)
Agricultural activity (including fertilizers)	3.5	44.3
Nitric acid production	0.4	5.1
Adipic acid production	0.1	1.3
Fossil –fuels combustion	1.4	17.7
Biomass combustion	1.0	12.7
Sewage treatments	1.5	18.9
Total	7.9	100

Source: Perez-Ramirez et al., Appl. Catal. B, 44 (2003) 117.

Large anthropogenic N₂O emission sources

Automotives w/ TWCs

FBC plants

Nitric acid plants

Adipic acid plants

SCR processes in P/Ps

Caprolactam production plants

Emission controls of N₂O from adipic acid plants

The most common technology is catalytic decomposition.

- . Use of metal-zeolites and metal oxides (i.e., noble metals, precious metals)
- . High temperatures (300~620°C)
- . High hydrothermal stability in the presence of H₂O
- . High stability and activity in the presence of O₂
- . Low hydraulic resistance to catalyst bed

Catalyst	Temp.	DeN₂O efficiency	Developed by
	(°C)	(%)	
CuAl ₂ O ₄ /Al ₂ O ₃ , Ag-CuO/Al ₂ O ₃ , Ag/Al ₂ O ₃	480~550	> 99ª	BASF
CoO-NiO/ZrO ₂	400	98.5 ^b	DuPont
CuO/Al ₂ O ₃	620	> 99.5°	Asahi
Co-, Fe-zeolites ^d	300~600	-	Air Products

Note. "-": no data or not applicable.

^a Under an off-gas consisting of 23% N_2O , 17% NO_2 , 47% N_2 , 7.5% O_2 and 3.0% H_2O .

^b With a flow of 100% N₂O.

^c In a realistic stream containing 34% N₂O.

^d With small amounts (0.2~0.6%) of precious metals to lower light-off temperatures.

Emission controls of N₂O from nitric acid plants

Stream	N ₂ O	NO	O ₂	H ₂ O
	(ppm)	(ppm)	(%)	(%)
Process-gas	1.5~2.5ª	95~97ª	-	-
Tail-gas	300~3,500	100~3,500b	1~4	0.25~3

HNO.

Note. "-": no data or not applicable; NO_x : $NO + NO_2$.

Commercial decomposition catalysts for Option A-1

-	<u> </u>	<u> </u>
Catalyst	Temp.	Commercialized by
	(°C)	
CuO/Al ₂ O ₃	800~950	BASF
Co ₂ AlO ₄ /CeO ₂	800~950	Yara International
$La_{0.8}Ce_{0.2}CoO_3$	800~950	Johnson Matthey
Co ₃ O ₄ /CeO ₂	890	Norsk Hydro Agri
Supported Rh, Pd	800~950	Heraeus

^a In %.

^b As of NO_x with NO₂/NO ratios near 1.

Emission controls of N₂O from nitric acid plants

Commercial deN₂O catalysis for Option B

Technology	Catalyst	DeN ₂ O (%)	Requirements and problems	Commercialized by
Decomposition	Fe-zeolites	> 80	. Medium temperatures (430~500°C) . Catalysts stability at such temperatures	Uhde ^a and Sud Chemie
NSCR	Pd/Al ₂ O ₃	> 70	 Reducing agents, representatively CH₄ High temperatures (450~650°C) Large CO₂ and CO emissions Catalysts stability at such temperatures Exotic materials for a gas expander High energy and maintenance costs 	CRIb
SCR	Fe-zeolites	~40	. Medium temperatures (390~450°C) . Reducing agents such as NH ₃ , CH ₄ , etc . CO ₂ , CO and unburned hydrocarbons emissions	Uhde ^a and Sud Chemie

^a In the ThyssenKrupp Group.

^b In the CRI/Criterion that is an affiliate of Royal Dutch Shell Group.

N₂O emissions from SCR processes

Emission source	Concentration (ppm)			
DeNO _x processes				
NH ₃ (or urea)-SCR	20 ~ 65			
NH ₃ (or urea)-SNCR	2 ~ 250			
Coal combustion boilers				
Pulverized coal (PC)	0.5 ~ 5			
Fluidized bed combustion (FBC)	20 ~ 200			
Natural gas combustion boilers	< 2			
Diesel combustion boilers	0 ~ 5			

Source: Perez-Ramirez et al., Appl. Catal. B, 44 (2003) 117; Gutierrez et al., Waste Manage. Res., 23 (2005) 133; Madia et al., Appl. Catal. B, 39 (2002) 181; Sjovall et al., Appl. Catal. B, 64 (2006) 180.

N₂O formation on V₂O₅/TiO₂-based catalysts

• Reaction conditions: [NO] = 800 ppm; [NH₃] = 800 ppm; [O₂] = 0.9%.

Source: Lietti et al., J. Catal., 187 (1999) 419.

•
$$8NO_2 + 6NH_3 \rightarrow 7N_2O + 9H_2O$$
 • $4NO_2 + 4NH_3 + O_2 \rightarrow 4N_2O + 6H_2O$

• 8NO +
$$2NH_3 \rightarrow 5N_2O$$
 + $3H_2O$ • 4NO + $4NH_3$ + $3O_2 \rightarrow 4N_2O$ + $6H_2O$

•
$$2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O$$

