Stationary Emissions and Control # Representative stationary sources **Coal-fired P/Ps** Oil-fired P/Ps Natural gas-fired P/Ps Steel making plants **Chemical plants** **Cement plants** **Waste incinerators** # An example of stationary source controls # Introduction to NO_x Emissions and Control # NOx control technologies **DAEGU UNIVERSITY** # Mechanism forming NOx in fuels combustion | Nitrogen oxides | Regions of formation | Mechanism/
Reaction | Dependent
Mainly on | |---|---|--|---| | Thermal NO _x (Zeldovich NO _x) | FlamesAfter burnerAll kinds of fuel | With an excess oxygen: O + N₂ = NO + N N + O₂ = NO + O | Concentration of O atoms from O₂ Residence time (T_{flame} > 1300°C) | | | | Under fuel-rich conditions:N + OH = NO + H | , name | | Prompt NO _x
(Fenimore NO _x) | FlamesAll kinds of fuel | • CN + H ₂ = HCN + H
• CN + H ₂ O = HCN + OH
• CH + N ₂ = HCN + N | Concentration of O atoms from O₂ O₂ concentration fed | | Fuel NO _x | FlamesCoals, heavy oils | • via CN-compounds | N concentrationResidence time | - Peak TEMPERATUREs at flame regions - **Combustion control measures:** Residence **TIME** at the peak temperatures - Feed air TURBULANCE associated with O₂ conc. # **DeNOx SCR technologies** # NH₃-SCR deNOx processes - © Commercially-proven process (first installed in the late 1970s, Japan) - High DeNO_x efficiency even in commercially-available scales - Relatively expensive - NH₃ slip - Highly corrosive - Relatively delicate feed system of NH₃ - Formation of ammonium salts # **Urea-SCR deNOx processes** - High DeNO_x activity - Non-toxic solid-phase reductant - Easier handling, transportation and storage - Applicable to stationary and mobile sources (Power plants and ships) - Diesel engine-equipped heavy duty vehicles - Difficulty in homogeneously feeding urea - NH₃ slip - Infrastructure of urea supply # **HC-SCR** deNOx processes - New emerging technology - □ DeNOx reaction w/o an additional reductant - ☑ Lean-burn gasoline engine (AFR = 18 ~ 22)Gas turbineDiesel engine - Relatively low DeNOx performances - Precursors for urban photochemical smog reaction # NH₃-SCR DeNO_x Technology # NH₃-SCR DeNOx reactions ### **NO** reduction reactions $$6NO + 4NH_3 \longrightarrow 5N_2 + 6H_2O$$ (1st priority) $6NO_2 + 8NH_3 \longrightarrow 7N_2 + 12H_2O$ (Undesired) $4NO + 4NH_3 + O_2 \longrightarrow 4N_2 + 6H_2O$ (2nd priority) ## **™** NH₃ oxidation reactions $$4NH_{3} + 3O_{2} \longrightarrow 2N_{2} + 6H_{2}O$$ $$4NH_{3} + 4O_{2} \longrightarrow 2N_{2} + 6H_{2}O$$ $$4NH_{3} + 5O_{2} \longrightarrow 4NO + 6H_{2}O$$ $$4NH_{3} + 7O_{2} \longrightarrow 4NO_{2} + 6H_{2}O$$ ### Side reactions $$2NH_3 + H_2O + 2NO_2 \longrightarrow NH_4NO_3 + NH_4NO_2$$ $$2SO_2 + O_2 \longrightarrow 2SO_3$$ $$2NH_3 + SO_3 + H_2O \longrightarrow (NH_4)_2SO_4$$ ## Representative commercial deNOx SCR catalysts **✓** Noble metals-based catalysts Pt, Ru, etc [★] V₂O₅/TiO₂-based catalysts (first patented by Engelhard Corp., and first commercialized by IHI Corp., Japan) Additives: WO₃, MoO₃, BaO, CaO, etc ✓ Cu- and Fe-zeolite catalysts (developed in USA and FRG) Prevention of an immediate increase in NH₃ slip when being overdosed √ Fe₂O₃-based catalysts (developed in FRG) Iron oxide particles with thin crystalline surface cover of iron phosphate; can be mixed with chromic oxide; can be melted along with normal iron at a steel plant ## Typical behaviors in activity vs. temperature Criteria that determine which types of catalyst should be used: - Flue gas temperatures - NO_x reduction efficiencies required - Acceptable NH₃ slip - Permissible oxidation of SO₂ - Concentration of pollutants in the inlet flue gases - Homogeneity of a flue gas flow A: Pt-based catalysts **B: Modified Pt-based catalysts** C: V₂O₅/TiO₂-based catalysts D: Metal-exchanged zeolites catalysts # Common shapes of deNOx SCR catalysts ## **Corrugates** ## **Honeycombs** # Flue gas flow designs in deNOx SCR processes # **DeNOx process configuration** # High dust and tail-gas systems # Stationary VOCs Emissions and Control ## Representative deVOCs applications - Solvent utilization facilities - Degreasing and solvent washing processes - Can, paper and fabric coatings chemicals - Manufacture of organic chemicals (cumene, caprolactam, maleic anhydride, etc) - Plywood manufacturing - Tire and rubber processing and production - Fish meal processing - Offset printing - Evaporants from waste water treatment plants - Volatiles from urine - Automotive exhaust - Evaporants from oil stations and storages - Asphalt production and blowing - Miscellaneous # Estimates of VOCs emissions and their categories - Remaining sources controls: - Recovery and reuse as a feedstock - Use of 2nd fuels - Suitable reduction processes - 1: Aliphatic HCs - 2: Aromatic HCs - 3: Halogenated HCs - 4: Ketons and aldehydes - 5: Alcohols, ethers and phenols - 6: Others # DeVOCs technologies and system designs - 1: Thermal oxidation - 2: Catalytic oxidation - 3: Adsorption - 4: Absorption - 5: Process heaters - 6: Flares - 7: Biofiltration - 8: Others # Representative deVOCs catalysts - Pt/Al₂O₃ washcoated on honeycombs - Pd/metal meshs or honeycombs - Hopcalites (amorphous CuMn₂O₄) - TiO₂-coated monoliths - Supported and unsupported NiO - V₂O₅-promoted TiO₂/monoliths - Multi-components (TiO₂/V₂O₅/WO₃/SnO₂/Pt) - Miscellaneous # Stationary and Mobile N₂O Emissions and Control # Which gases result in global warming - Primary green house gases (GHGs): - Carbon dioxide (CO₂) - Nitrous oxide (N₂O) - Methane (CH₄) - Fluorinated gases, chlorofluorocarbons, particulates, clouds - All fossil fuels contain carbon and when burned release CO₂ into the atmosphere. - Combustion of fuels also release emissions of N₂O and CH₄ as well as criteria pollutants. | GHG | Global warming potential (GWP) | | |------------------|--------------------------------|--| | CO ₂ | 1 | | | CH ₄ | 21 | | | N ₂ O | 310 | | | HFCs | 1,300 | | | PFCs | 7,000 | | | SF ₆ | 23,900 | | • CO₂, N₂O and CH₄ are the primary greenhouse gas emissions responsible for global warming. # N₂O emission sources | Source | Emissions
(Mt/y) | Contribution (%) | |---|---------------------|------------------| | Agricultural activity (including fertilizers) | 3.5 | 44.3 | | Nitric acid production | 0.4 | 5.1 | | Adipic acid production | 0.1 | 1.3 | | Fossil –fuels combustion | 1.4 | 17.7 | | Biomass combustion | 1.0 | 12.7 | | Sewage treatments | 1.5 | 18.9 | | Total | 7.9 | 100 | Source: Perez-Ramirez et al., Appl. Catal. B, 44 (2003) 117. # Large anthropogenic N₂O emission sources **Automotives w/ TWCs** **FBC** plants **Nitric acid plants** **Adipic acid plants** **SCR** processes in P/Ps Caprolactam production plants # Emission controls of N₂O from adipic acid plants ### The most common technology is catalytic decomposition. - . Use of metal-zeolites and metal oxides (i.e., noble metals, precious metals) - . High temperatures (300~620°C) - . High hydrothermal stability in the presence of H₂O - . High stability and activity in the presence of O₂ - . Low hydraulic resistance to catalyst bed | Catalyst | Temp. | DeN₂O efficiency | Developed by | |--|---------|-------------------|--------------| | | (°C) | (%) | | | CuAl ₂ O ₄ /Al ₂ O ₃ , Ag-CuO/Al ₂ O ₃ , Ag/Al ₂ O ₃ | 480~550 | > 99ª | BASF | | CoO-NiO/ZrO ₂ | 400 | 98.5 ^b | DuPont | | CuO/Al ₂ O ₃ | 620 | > 99.5° | Asahi | | Co-, Fe-zeolites ^d | 300~600 | - | Air Products | Note. "-": no data or not applicable. ^a Under an off-gas consisting of 23% N_2O , 17% NO_2 , 47% N_2 , 7.5% O_2 and 3.0% H_2O . ^b With a flow of 100% N₂O. ^c In a realistic stream containing 34% N₂O. ^d With small amounts (0.2~0.6%) of precious metals to lower light-off temperatures. # Emission controls of N₂O from nitric acid plants | Stream | N ₂ O | NO | O ₂ | H ₂ O | |-------------|------------------|------------|----------------|------------------| | | (ppm) | (ppm) | (%) | (%) | | Process-gas | 1.5~2.5ª | 95~97ª | - | - | | Tail-gas | 300~3,500 | 100~3,500b | 1~4 | 0.25~3 | HNO. Note. "-": no data or not applicable; NO_x : $NO + NO_2$. ### Commercial decomposition catalysts for Option A-1 | - | <u> </u> | <u> </u> | |--|----------|--------------------| | Catalyst | Temp. | Commercialized by | | | (°C) | | | CuO/Al ₂ O ₃ | 800~950 | BASF | | Co ₂ AlO ₄ /CeO ₂ | 800~950 | Yara International | | $La_{0.8}Ce_{0.2}CoO_3$ | 800~950 | Johnson Matthey | | Co ₃ O ₄ /CeO ₂ | 890 | Norsk Hydro Agri | | Supported Rh, Pd | 800~950 | Heraeus | ^a In %. ^b As of NO_x with NO₂/NO ratios near 1. # Emission controls of N₂O from nitric acid plants ### Commercial deN₂O catalysis for Option B | Technology | Catalyst | DeN ₂ O
(%) | Requirements and problems | Commercialized
by | |---------------|-----------------------------------|---------------------------|--|-------------------------------------| | Decomposition | Fe-zeolites | > 80 | . Medium temperatures (430~500°C) . Catalysts stability at such temperatures | Uhde ^a and Sud
Chemie | | NSCR | Pd/Al ₂ O ₃ | > 70 | Reducing agents, representatively CH₄ High temperatures (450~650°C) Large CO₂ and CO emissions Catalysts stability at such temperatures Exotic materials for a gas expander High energy and maintenance costs | CRIb | | SCR | Fe-zeolites | ~40 | . Medium temperatures (390~450°C) . Reducing agents such as NH ₃ , CH ₄ , etc . CO ₂ , CO and unburned hydrocarbons emissions | Uhde ^a and Sud
Chemie | ^a In the ThyssenKrupp Group. ^b In the CRI/Criterion that is an affiliate of Royal Dutch Shell Group. # N₂O emissions from SCR processes | Emission source | Concentration (ppm) | | | | |--------------------------------|---------------------|--|--|--| | DeNO _x processes | | | | | | NH ₃ (or urea)-SCR | 20 ~ 65 | | | | | NH ₃ (or urea)-SNCR | 2 ~ 250 | | | | | Coal combustion boilers | | | | | | Pulverized coal (PC) | 0.5 ~ 5 | | | | | Fluidized bed combustion (FBC) | 20 ~ 200 | | | | | Natural gas combustion boilers | < 2 | | | | | Diesel combustion boilers | 0 ~ 5 | | | | Source: Perez-Ramirez et al., Appl. Catal. B, 44 (2003) 117; Gutierrez et al., Waste Manage. Res., 23 (2005) 133; Madia et al., Appl. Catal. B, 39 (2002) 181; Sjovall et al., Appl. Catal. B, 64 (2006) 180. # N₂O formation on V₂O₅/TiO₂-based catalysts • Reaction conditions: [NO] = 800 ppm; [NH₃] = 800 ppm; [O₂] = 0.9%. Source: Lietti et al., J. Catal., 187 (1999) 419. • $$8NO_2 + 6NH_3 \rightarrow 7N_2O + 9H_2O$$ • $4NO_2 + 4NH_3 + O_2 \rightarrow 4N_2O + 6H_2O$ • 8NO + $$2NH_3 \rightarrow 5N_2O$$ + $3H_2O$ • 4NO + $4NH_3$ + $3O_2 \rightarrow 4N_2O$ + $6H_2O$ • $$2NH_3 + 2O_2 \rightarrow N_2O + 3H_2O$$