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Representative stationary sources

Coal-fired P/Ps Oil-fired P/Ps Natural gas-fired P/Ps
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Steel making plants

Chemical plants

Cement plants

Waste incinerators



An example of stationary source controls
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NH3
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Fuel

Stack
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SNCR High dust system

SNCR: selective non-catalytic reduction
SCR: selective catalytic reduction
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ESP
(not catalytic)

Fuel

Air preheater

Combustion
air

Limestone
slurry

FGD
(not catalytic)

C

Catalysis for source 
controls:

• NOx emissions
• VOCs emissions



Introduction to
NOx Emissions and Control
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NOx Control

Primary measures
or

Combustion Control
or

Clean Techniques

Furnace

Secondary Measures
or

Post-combustion Control
or

Clean-up Techniques
or

Flue-gas Treatment
BurnerN content of  fuel

NOx control technologies
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Wet System Dry System
Gas-phase
oxidation

+
Absorption

Gas-phase
oxidation

Absorption
Reduction

EDTA systems

Selective
Catalytic

Reduction

Non-selective
Catalytic

Reduction

Non-selective
Non-catalytic

Reduction

Selective
Non-catalytic

Reduction
Adsorption Radiation

SCR, NSCR, SNCR, NSNCR



Mechanism forming NOx in fuels combustion

Nitrogen oxides Regions of
formation

Mechanism/
Reaction

Dependent
Mainly on

Thermal NOx • Flames
• After burner
• All kinds of  fuel

• Concentration of  O
atoms from O2

• Residence time
(Tflame > 1300oC)

• With an excess oxygen:
O + N2 = NO + N
N + O2 = NO + O

• Under fuel-rich conditions:
N + OH = NO + H

(Zeldovich NOx)
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Prompt NOx

Fuel NOx

• Flames
• All kinds of  fuel

• Flames
• Coals, heavy oils

• Concentration of  O
atoms from O2

• O2 concentration
fed

• N concentration
• Residence time

• via CN-compounds

• CN + H2 = HCN + H
• CN + H2O = HCN + OH
• CH + N2 = HCN + N

(Fenimore NOx)

• Peak TEMPERATUREs at flame regions
Combustion control measures: • Residence TIME at the peak temperatures

• Feed air TURBULANCE associated with O2 conc.



DeNOx SCR technologies
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NH3-SCR deNOx processes

☞ Commercially-proven process

(first installed in the late 1970s, Japan)

☞ High DeNOx efficiency even in commercially-available

scales

☞ Relatively expensive

☞ NH3 slip

☞ Highly corrosive

☞ Relatively delicate feed system of NH3

☞ Formation of ammonium salts
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Urea-SCR deNOx processes

☞ High DeNOx activity

☞ Non-toxic solid-phase reductant

☞ Easier handling, transportation and storage

☞Applicable to stationary and mobile sources

(Power plants and ships)

☞ Diesel engine-equipped heavy duty vehicles

☞ Difficulty in homogeneously feeding urea

☞ NH3 slip

☞ Infrastructure of urea supply
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HC-SCR deNOx processes

☞ New emerging technology

☞Applicable to stationary and mobile emissions

(Alternative to conventional NH3-SCR and TWC)

☞ DeNOx reaction w/o an additional reductant

☞ Lean-burn gasoline engine (AFR = 18 ~ 22)
Gas turbine
Diesel engine

☞ Relatively low DeNOx performances

☞ Precursors for urban photochemical smog reaction
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NH3-SCR DeNOx Technology
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NH3-SCR DeNOx reactions
☞ NO reduction reactions

6NO   +   4NH3 5N2 +   6H2O (1st priority) 

4N2 +   6H2O (2nd priority)4NO + 4NH3  + O2 

2N2 +   6H2O4NH3     +  3O2 

☞ NH3 oxidation reactions

6NO2 +   8NH3 7N2 +   12H2O (Undesired) 

2N2 +   6H2O4NH3     +  4O2 
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2NH3  + H2 O + 2NO2

☞ Side reactions

2SO2 +   O2 2SO3 

2NH3 + SO3 + H2 O (NH4 )2 SO4

4NO  +   6H2O4NH3     +   5O2 

4NH3     +   7O2 4NO2 +   6H2O

2N2 +   6H2O4NH3     +  4O2 

NH4 NO3 + NH4 NO2 



Representative commercial deNOx SCR catalysts

ö Noble metals-based catalysts
Pt, Ru, etc

öV2O5/TiO2-based catalysts (first patented by Engelhard Corp.,
and first commercialized by IHI Corp., Japan)

Additives: WO3, MoO3, BaO, CaO, etc

ö Cu- and Fe-zeolite catalysts (developed in USA and FRG)
Prevention of an immediate increase in NH3 slip when being overdosed

ö Fe2O3-based catalysts (developed in FRG)
Iron oxide particles with thin crystalline surface cover of iron phosphate; 
can be mixed with chromic oxide; can be melted along with normal iron at 
a steel plant
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Typical behaviors in activity vs. temperature

Criteria that determine which types
of catalyst should be used:

• Flue gas temperatures

• NOx reduction efficiencies required

• Acceptable NH3 slip

• Permissible oxidation of SO2

• Concentration of pollutants in the

inlet flue gases

• Homogeneity of a flue gas flow
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Criteria that determine which types
of catalyst should be used:

• Flue gas temperatures

• NOx reduction efficiencies required

• Acceptable NH3 slip

• Permissible oxidation of SO2

• Concentration of pollutants in the

inlet flue gases

• Homogeneity of a flue gas flow

A: Pt-based catalysts

B: Modified Pt-based catalysts

C: V2O5/TiO2-based catalysts

D: Metal-exchanged zeolites catalysts



Common shapes of deNOx SCR catalysts

Corrugates Honeycombs
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Plates



Flue gas flow designs in deNOx SCR processes
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DeNOx process configuration

17



High dust and tail-gas systems

High dust applications Low dust applications
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Stationary
VOCs Emissions and Control
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Stationary
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Representative deVOCs applications

• Solvent utilization facilities
• Degreasing and solvent washing processes
• Can, paper and fabric coatings chemicals
• Manufacture of organic chemicals (cumene, caprolactam, maleic
anhydride, etc)

• Plywood manufacturing
• Tire and rubber processing and production
• Fish meal processing
• Offset printing
• Evaporants from waste water treatment plants
• Volatiles from urine
• Automotive exhaust
• Evaporants from oil stations and storages
• Asphalt production and blowing
• Miscellaneous
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Estimates of VOCs emissions and their categories
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1:   Aliphatic HCs

2: Aromatic HCs

3: Halogenated HCs

4: Ketons and aldehydes

5: Alcohols, ethers and phenols

6: Others

• Vehicles emissions controls: TWCs and DOCs

• Remaining sources controls:

- Recovery and reuse as a feedstock

- Use of 2nd fuels

- Suitable reduction processes



DeVOCs technologies and system designs
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1:   Thermal oxidation
2: Catalytic oxidation
3: Adsorption
4: Absorption
5: Process heaters
6: Flares
7:   Biofiltration
8:   Others



Representative deVOCs catalysts

• Pt/Al2O3 washcoated on honeycombs

• Pd/metal meshs or honeycombs

• Hopcalites (amorphous CuMn2O4)

• TiO2-coated monoliths

• Supported and unsupported NiO

• V2O5-promoted TiO2/monoliths

• Multi-components
(TiO2/V2O5/WO3/SnO2/Pt)

• Miscellaneous
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Stationary and Mobile
N2O Emissions and Control
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· Primary green house gases (GHGs):

- Carbon dioxide (CO2)
- Nitrous oxide (N2O)
- Methane (CH4)
- Fluorinated gases, chlorofluorocarbons,
particulates, clouds

· All fossil fuels contain carbon and when
burned release CO2 into the atmosphere.

· Combustion of fuels also release emissions
of N2O and CH4 as well as criteria pollutants.

· CO2, N2O and CH4 are the primary greenhouse gas emissions responsible
for global warming.

GHG Global warming 
potential (GWP)

CO2 1

CH4 21

N2O 310

Which gases result in global warming
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· Primary green house gases (GHGs):

- Carbon dioxide (CO2)
- Nitrous oxide (N2O)
- Methane (CH4)
- Fluorinated gases, chlorofluorocarbons,
particulates, clouds

· All fossil fuels contain carbon and when
burned release CO2 into the atmosphere.

· Combustion of fuels also release emissions
of N2O and CH4 as well as criteria pollutants.

· CO2, N2O and CH4 are the primary greenhouse gas emissions responsible
for global warming.

HFCs 1,300

PFCs 7,000

SF6 23,900



N2O emission sources

Source Emissions
(Mt/y)

Contribution
(%)

Agricultural activity
(including fertilizers) 3.5 44.3

Nitric acid production 0.4 5.1

Adipic acid production 0.1 1.3

Fossil –fuels 
combustion 1.4 17.7
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Fossil –fuels 
combustion

Biomass combustion 1.0 12.7

Sewage treatments 1.5 18.9

Total 7.9 100

Source: Perez-Ramirez et al., Appl. Catal. B, 44
(2003) 117.



Large anthropogenic N2O emission sources

Automotives w/ TWCs FBC plants
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Nitric acid plants Adipic acid plants
Caprolactam production plants

SCR processes in P/Ps



Emission controls of N2O from adipic acid plants

Catalyst Temp.

(oC)

DeN2O efficiency

(%)

Developed by

The most common technology is catalytic decomposition.

․Use of metal-zeolites and metal oxides (i.e., noble metals, precious metals)

․High temperatures (300~620oC)

․High hydrothermal stability in the presence of H2O

․High stability and activity in the presence of O2

․Low hydraulic resistance to catalyst bed
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Catalyst Temp.

(oC)

DeN2O efficiency

(%)

Developed by

CuAl2O4/Al2O3, Ag-CuO/Al2O3, Ag/Al2O3 480~550 > 99a BASF

CoO-NiO/ZrO2 400 98.5b DuPont

CuO/Al2O3 620 > 99.5c Asahi

Co-, Fe-zeolitesd 300~600 - Air Products

Note. "-": no data or not applicable.
a Under an off-gas consisting of 23% N2O, 17% NO2, 47% N2, 7.5% O2 and 3.0% H2O.
b With a flow of 100% N2O.
c In a realistic stream containing 34% N2O.
d With small amounts (0.2~0.6%) of precious metals to lower light-off temperatures.



Emission controls of N2O from nitric acid plants
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Stream N2O
(ppm)

NO
(ppm)

O2

(%)
H2O
(%)

Process-gas 1.5~2.5a 95~97a - -

Tail-gas 300~3,500 100~3,500b 1~4 0.25~3

Note. “-”: no data or not applicable; NOx: NO + NO2.
a In %.
b As of NOx with NO2/NO ratios near 1.

Commercial decomposition catalysts for Option A-1

Catalyst Temp.

(oC)

Commercialized by

CuO/Al2O3 800~950 BASF

Co2AlO4/CeO2 800~950 Yara International

La0.8Ce0.2CoO3 800~950 Johnson Matthey

Co3O4/CeO2 890 Norsk Hydro Agri

Supported Rh, Pd 800~950 Heraeus



Emission controls of N2O from nitric acid plants
Commercial deN2O catalysis for Option B

Technology Catalyst DeN2O
(%)

Requirements and problems Commercialized 
by

Decomposition Fe-zeolites > 80 ․Medium temperatures (430~500oC)

․Catalysts stability at such temperatures

Uhdea and Sud

Chemie

NSCR Pd/Al2O3 > 70 ․Reducing agents, representatively CH4

․High temperatures (450~650oC)

․Large CO2 and CO emissions

․Catalysts stability at such temperatures

․Exotic materials for a gas expander

․High energy and maintenance costs

CRIb
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․Reducing agents, representatively CH4

․High temperatures (450~650oC)

․Large CO2 and CO emissions

․Catalysts stability at such temperatures

․Exotic materials for a gas expander

․High energy and maintenance costs

SCR Fe-zeolites ~40 ․Medium temperatures (390~450oC)

․Reducing agents such as NH3, CH4, etc

․CO2, CO and unburned hydrocarbons

emissions

Uhdea and Sud

Chemie

a In the ThyssenKrupp Group.
b In the CRI/Criterion that is an affiliate of Royal Dutch Shell Group.



Emission source Concentration (ppm)

DeNOx processes

NH3 (or urea)-SCR 20 ~ 65

NH3 (or urea)-SNCR 2 ~ 250

Coal combustion boilers

N2O emissions from SCR processes
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Pulverized coal (PC) 0.5 ~ 5

Fluidized bed combustion (FBC) 20 ~ 200

Natural gas combustion boilers < 2

Diesel combustion boilers 0 ~ 5

Source: Perez-Ramirez et al., Appl. Catal. B, 44 (2003) 117; Gutierrez et al., 
Waste Manage. Res., 23 (2005) 133; Madia et al., Appl. Catal. B, 39 (2002) 
181; Sjovall et al., Appl. Catal. B, 64 (2006) 180.



• Reaction conditions: [NO] = 800 ppm; [NH3] = 800 ppm; [O2] = 0.9%.
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N2O formation on V2O5/TiO2-based catalysts
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Source: Lietti et al., J. Catal., 187 (1999) 419.
• 8NO2 +  6NH3 → 7N2O  +  9H2O • 4NO2 +  4NH3 +  O2 → 4N2O  +  6H2O 

• 8NO  +  2NH3 → 5N2O  +  3H2O • 4NO  +  4NH3 +  3O2 → 4N2O  +  6H2O

• 2NH3 +  2O2 → N2O  +  3H2O


