Typical Position of TWCs Ultra Low Emission Vehicles (ULEVs) **CCC: Close-coupled Catalytic Converter** **UCC: Underbody Catalytic Converter** UCC → CCC → CCC + UCC ## **Monolith Types for TWCs** Ceramic monolith: Cordierites (2MgO·2Al₂O₃·5SiO₂) Metallic monolith: Stainless steel (75% Fe - 20% Cr - 5% Al) # **Active Ingredients of TWCs** ## Representative Configuration of TWCs λ sensor #### NO_x Storage/Reduction Catalysts (NSR) NO_x Storage NO_x Reduction A Pt/BaO/Al₂O₃ catalyst is typically used to store NO_x under oxidizing conditions as adsorbed "nitrate" species, which are then released and reduced on a traditional TWC upon temporarily running GDI engines under rich conditions. ## Typical Position of NSR for GDI Engines NSR catalysts are fitted to gasoline direct injection (GDI) engine-equipped vehicles. The GDI engines were first developed by the Mitsubishi Motors in 1996, but the Toyota Motors launched commercially such engines. ## **Diesel Catalytic Converters: DOCs** Pt-based catalysts are commonly used for this DOCs. Diesel oxidation catalysts (DOCs) ## **Diesel Catalytic Converters: DPFs and CPFs** Exhaust gas enters the blocked channels and is forced through porous walls - Soot materials are trapped on the walls. Silicon carbide(SiC) #### Cordierite ### Regeneration of DPFs and CPFs - Regeneration Approaches - Continuous regeneration, e.g. CRTTM or catalyzed filter - Active regeneration - Active regeneration via O_2 -soot reaction (a) $T > 600^{\circ}C$ - Electrical heating - Exhaust temperature management, e.g. VVT - Warm-up DOC-NO oxidation to NO_2 improves PM combustion ## Diesel Catalytic Converters: DOC/D(C)PFs Pt-based catalysts are commonly used for this DOC/DPFs. - Working @ T > 250°C. - Subsequent need of DeNO_x control systems. - Need of ultra low sulfur diesel fuels (<50 ppm). - Periodic regeneration to remove soot