

Typical Position of TWCs

Ultra Low Emission Vehicles (ULEVs)

CCC: Close-coupled Catalytic Converter

UCC: Underbody Catalytic Converter

UCC → CCC → CCC + UCC

Monolith Types for TWCs

Ceramic monolith: Cordierites (2MgO·2Al₂O₃·5SiO₂)

Metallic monolith: Stainless steel (75% Fe - 20% Cr - 5% Al)

Active Ingredients of TWCs

Representative Configuration of TWCs

 λ sensor

NO_x Storage/Reduction Catalysts (NSR)

NO_x Storage

NO_x Reduction

A Pt/BaO/Al₂O₃ catalyst is typically used to store NO_x under oxidizing conditions as adsorbed "nitrate" species, which are then released and reduced on a traditional TWC upon temporarily running GDI engines under rich conditions.

Typical Position of NSR for GDI Engines

NSR catalysts are fitted to gasoline direct injection (GDI) engine-equipped vehicles.

The GDI engines were first developed by the Mitsubishi Motors in 1996, but the Toyota Motors launched commercially such engines.

Diesel Catalytic Converters: DOCs

Pt-based catalysts are commonly used for this DOCs.

Diesel oxidation catalysts (DOCs)

Diesel Catalytic Converters: DPFs and CPFs

Exhaust gas enters the blocked channels and is forced through porous walls - Soot materials are trapped on the walls.

Silicon carbide(SiC)

Cordierite

Regeneration of DPFs and CPFs

- Regeneration Approaches
 - Continuous regeneration, e.g. CRTTM or catalyzed filter
 - Active regeneration
- Active regeneration via O_2 -soot reaction (a) $T > 600^{\circ}C$
 - Electrical heating
 - Exhaust temperature management, e.g. VVT
- Warm-up DOC-NO oxidation to NO_2 improves PM combustion

Diesel Catalytic Converters: DOC/D(C)PFs

Pt-based catalysts are commonly used for this DOC/DPFs.

- Working @ T > 250°C.
- Subsequent need of DeNO_x control systems.
- Need of ultra low sulfur diesel fuels (<50 ppm).
- Periodic regeneration to remove soot

