Low-temperature CO oxidation for HCCI road applications

# Low-temperature CO oxidation in environmental and industrial catalysis

- ☐ Engine-out emissions control for advanced vehicles with homogeneous charge compression ignition (HCCI) engines
- ☐ Reformer product purification for polymer electrolyte fuel cells
- □ Indoor air cleaning
- □ Gas sensors
- ☐ Gas masks
- ☐ Prevention of the deactivation of CO₂ lasers

# The need of low-temperature CO oxidation in HCCI road applications

The HCCI combustion has been proposed to be an alternative and attractive technology for internal combustion engines that can offer a great potential of high thermal efficiencies, comparable to or greater than conventional diesel engine vehicles, and dramatic reduction in  $NO_x$  (NO +  $NO_2$ ) and particulate matter (PM) emissions; therefore, HCCI engine-equipped automobiles are probably one of the most promising candidates to meet very stringent future emission standards, e.g., US Tier 2 program and EURO 5.

One of the current challenges to the HCCl technology for road applications is to control CO and unburned hydrocarbons (HCs) emissions with concentrations greater than 1%. These emissions occur at low exhaust temperatures that make it difficult to employ catalysts, such as well-proven three-way catalytic converters (TWCs), for reducing the engine-out emissions. Furthermore, the TWCs consisting of Rh, Pt and Pd as major active moieties would not be available for HCCl applications because of high concentrations of  $O_2$  in the exhaust which can readily transform the Rh to an inactive  $Rh_2O_3$ .

### Requirements for HCCI road applications

- **♦** HCCl combustion technology:
  - has high thermal efficiencies, comparable to diesel engines;
  - gives dramatic reduction in NO<sub>x</sub> and particulate matter (PM) emissions;
- meets very stringent future emission standards (US Tier 2 and EURO 6).
- One of the current challenges to the HCCl technology is:
  - reduction in CO and HCs emissions.
- ♦ Well-proven three-way catalytic converters (TWCs):
  - would not be available for HCCl engine-out emissions control because of high concentrations of O<sub>2</sub> in the exhaust.

### Simulated conditions for HCCI applications

| Gas composition and operating temperature window | HCCI                    | PEMFC    |
|--------------------------------------------------|-------------------------|----------|
| CO (%)                                           | > 1                     | 0.5 ~ 2  |
| H <sub>2</sub> (%)                               | n.d.                    | 45 ~ 75  |
| CO <sub>2</sub> (%)                              | n.d.                    | 15 ~ 25  |
| H <sub>2</sub> O (%)                             | n.d.                    | 15 ~ 30  |
| NO <sub>x</sub> (ppm)                            | < 20                    | n.d.     |
| HC <sup>a</sup> (%)                              | > 1                     | trace    |
| PM (mg/m³)                                       | ≈ <b>0</b> <sup>b</sup> | n.d.     |
| <i>T</i> (°C)                                    | r.t. ~ 280              | 70 ~ 300 |

<sup>&</sup>lt;sup>a</sup> Unconverted or burned.

<sup>&</sup>lt;sup>b</sup> Under detection limits.

#### Representative catalysts for low-temperature CO oxidation

- ☐ Supported precious noble metals, such as Pt, Rh, Pd, Ru, and Ir
  - high performances and stability
  - key constituents in automotive catalysis
- Supported Au nanoparticles
  - very high activity even at temperatures as low as -70°C
  - nanosized gold particles (< 10 nm) dispersed uniformly on transition metal oxides

The need to substitute for the supported platinum group metals-based and Au catalysts is because of the high cost of precious metals and their weak sulfur tolerance.

- Supported or promoted CuO systems
  - CuO-CeO<sub>2</sub> mixed oxides: highly active and exceptionally selective with a PrO<sub>x</sub> condition
  - Unpromoted and unsupported CuO: complete oxidation even at ambient temperatures
- ☐ Unsupported and supported CoO<sub>x</sub> catalysts
  - Unsupported Co<sub>3</sub>O<sub>4</sub> powders: highly active at temperatures greater than 150°C, depending significantly on calcination temperatures
  - Supported cobalt oxides: dependent on supports and pretreatment procedures used

### Keypoints to candidate good catalysts

One of the noteworthy differences in conditions between PEMFC and HCCI applications is the high concentration of  $H_2$ .  $Co_3O_4$  gave no activity for  $H_2$  oxidation at low temperatures, such as 130°C, when using a flowing mixture of CO,  $H_2$  and  $O_2$  in  $N_2$ . Compared to the  $CoO_x$  dispersed on  $SiO_2$  and  $AI_2O_3$ ,  $CoO_x/TiO_2$  catalysts were very difficult to reduce while flowing pure  $H_2$ , even at  $300^\circ C$ . This suggests  $CoO_x$  species that are active for CO oxidation at low temperatures, e.g.,  $Co_3O_4$ , may be much more stable on  $TiO_2$  surfaces, even in the presence of  $H_2$ .

## Preparation and characterization of CoO<sub>x</sub>/TiO<sub>2</sub> catalysts for low-temperature CO oxidation

- ☐ Preparation of CoO<sub>x</sub>/TiO<sub>2</sub> catalysts *via* a wet impregnation technique
  - Supports: pellet-type TiO<sub>2</sub> (Millennium Chemicals, DT51D, S.A. = 38 m<sup>2</sup>/g) pure powder-type TiO<sub>2</sub> (Millennium Chemicals, DT51D, S.A. = 87 m<sup>2</sup>/g)
  - Calcination temperatures: 250, 350, 450, 510 and 570°C
- ☐ Characterization for catalyst samples
  - XRD measurements for 5 wt% CoO<sub>x</sub>/TiO<sub>2</sub> calcined at different temperatures
  - Determination of Co 2p binding energy for the samples used for XRD measurements
- ☐ Catalytic CO oxidation in a continuous flow reactor system
  - [CO] = 1% in a flowing mixture of 3%  $O_2/96\%$  He
  - $T = 100^{\circ}C$
  - GHSV =  $6,000 66,000 \text{ h}^{-1}$

## Activity profiles for CO oxidation over 5 wt% CoO<sub>x</sub>/TiO<sub>2</sub> catalysts after calcination at different temperatures



[CO] = 1%, T = 100°C, GHSV = 66,000 h<sup>-1</sup>

# XRD and XPS spectra for reference Co compounds, and 5 wt% CoOx/TiO<sub>2</sub> calcined at different temperatures



(a)  $\Pi O_2$ ; (b) 5%  $GOO_x/\Pi O_2$  calcined at  $450^{\circ}C$ ; (c)  $GO(OH)_2$ ; (d)  $GO_3O_4$ ; (e) GOO. The vertical dotted bars represent the diffraction peaks for  $GO_3O_4$ .



#### Co 2p XPS spectra for CoO<sub>x</sub>/TiO<sub>2</sub> catalysts

## Samples of 5 wt% CoO<sub>x</sub>/TiO<sub>2</sub> calcined at different temperatures



A sample of 5 wt% CoO<sub>x</sub>/TiO<sub>2</sub> calcined at 570°C following Ar<sup>+</sup> sputtering at a rate of 1.5 nm/min



# Co 2p<sub>3/2</sub> binding energies for CoO<sub>x</sub>/TiO<sub>2</sub> catalysts calcined at different temperatures

| Catalyst                                 | Calcination at: | Binding energy (eV) | ΔE <sup>a)</sup> |
|------------------------------------------|-----------------|---------------------|------------------|
| CoO                                      | -               | 780.3               | 15.9             |
| Co <sub>3</sub> O <sub>4</sub>           | -               | 779.9               | 15.2             |
| Co(OH) <sub>2</sub>                      | -               | 781.2               | 16.0             |
| Co <sub>2</sub> TiO <sub>4</sub>         | -               | 781.1               | 15.7             |
| CoTiO <sub>3</sub>                       | -               | 781.3               | 16.0             |
| 5 wt% CoO <sub>x</sub> /TiO <sub>2</sub> | 250°C           | 779.6               | 15.1             |
| 5 wt% CoO <sub>x</sub> /TiO <sub>2</sub> | 350°C           | 779.8               | 15.2             |
| 5 wt% CoO <sub>x</sub> /TiO <sub>2</sub> | 450°C           | 780.3               | 15.4             |
| 5 wt% CoO <sub>x</sub> /TiO <sub>2</sub> | 570°C           | 781.3               | 15.8             |

a) Spin-orbit splitting.

# Model nanoparticles for the $CoO_x$ species with 5 wt $CoO_x/TiO_2$ catalysts after calcination at different temperatures

Type C: Partial Co<sub>n</sub>TiO<sub>n+2</sub> overlayer on Co<sub>3</sub>O<sub>4</sub> particle



Consequently, a 5%  $CoO_x/TiO_2$  catalyst calcined at 570°C possesses the Type B, but calcining it at 450°C gives the Type A  $Co_3O_4$  nanoparticles.

# Durability of 5 wt% CoO<sub>x</sub>/TiO<sub>2</sub> calcined @ 350°C for CO oxidation at different temperatures



## Structure of Co<sub>3</sub>O<sub>4</sub>



### **OH- and O-terminated CoO<sub>x</sub> surface**



Co<sup>2+</sup>

#### This surface:

- may not be not active for CO oxidation reaction;
- may not be probable.

## **Unreconstructed CoO<sub>x</sub> surface**



## Bulk termination planes of Co<sub>3</sub>O<sub>4</sub>



## Octopolar reconstructed CoO<sub>x</sub> surface



### Catalysts and system used for CO oxidation

- ☐ Preparation of CoO<sub>x</sub>/TiO<sub>2</sub> catalysts *via* a wet impregnation technique
  - Supports: pure powder-type TiO<sub>2</sub> (Millennium Chemicals, DT51D, S.A. = 87 m<sup>2</sup>/g)
- ☐ Synthesis of Co<sub>n</sub>TiO<sub>n+2</sub> via a solid-state reaction
  - CoO + TiO<sub>2</sub> -> CoTiO<sub>3</sub>
  - 2CoO + TiO<sub>2</sub> -> Co<sub>2</sub>TiO<sub>4</sub>
- ☐ Catalytic CO oxidation using a continuous flow reactor system
  - 1% CO in a flowing mixture of 3% O<sub>2</sub>/96% He
  - Reaction temperature = 100 180°C, hereafter designated to  $T_{rxn}$
  - Calcination temperature = 250 570°C, hereafter designated to  $T_{calc}$
  - GHSV =  $6,000 24,000 h^{-1}$

### CO oxidation over 5% CoO<sub>x</sub>/TiO<sub>2</sub>

Effect on calcination excursion and an earlier proposed model for CoO<sub>x</sub>



#### Effect on GHSVs and T<sub>rxns</sub>





#### Effect on CoO<sub>x</sub> amounts



#### Effect on O<sub>2</sub> and CO concentrations



## Octopolar CoO<sub>x</sub> surface

Surface reconstruction of Co<sub>3</sub>O<sub>4</sub>



### **Summary**

- ◆ A 5% CoO<sub>x</sub>/TiO<sub>2</sub> catalyst:
  - is quite active for CO oxidation even at low temperatures; but
  - exhibits very complicated behavior in duration of its activity for this reaction.
- ◆ Durability of the catalyst in CO oxidation at 100°C depends significantly on:
  - thermal excursion and reaction parameters.
- ◆ Such deactivation behavior is probably associated with:
  - surface reconstruction;
  - the deposition of carbonaceous materials.