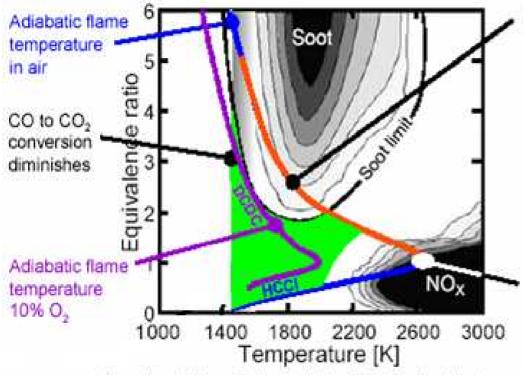
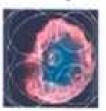
Autocatalysis and HC Traps

(mainly for Gasoline Vehicles)



HCs Emissions and Control

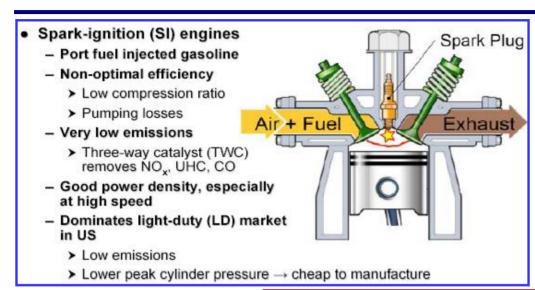
- Future HCs emissions regulations
- Strategies of HCs emissions control
 - Advanced TWCs
 - HC traps
- HC traps


Graphical summary of SI, CI and HCCI engines

- Diesel (CI) combustion
 - controlled heat release (mixing)
- controlled combustion timing
- wide load range
- high efficiency (relative to SI)
- NO, and PM emissions

Spark ignition (SI) combustion

- controlled heat release (flame propagation)
- controlled combustion timing
- wide load range
- three-way catalyst
- low efficiency (relative to diesel)



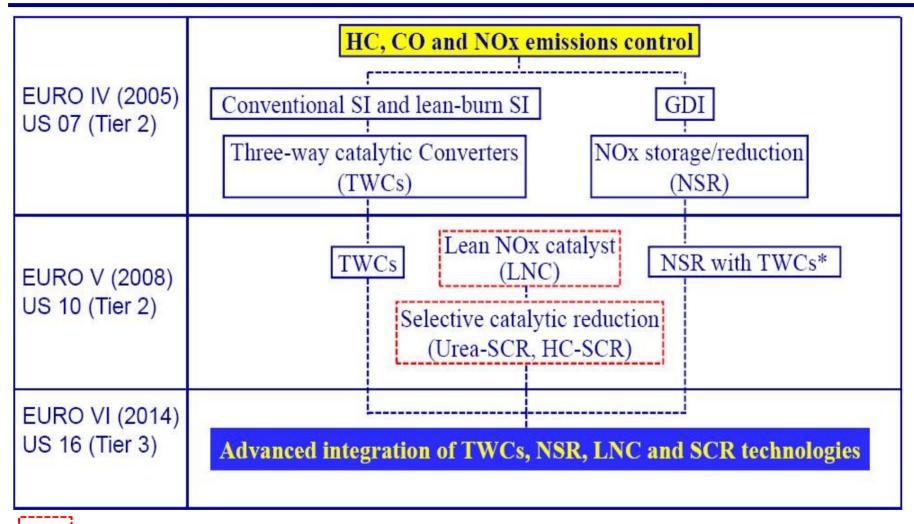
- offers diesel-like efficiency (high CR & no throttling)
- low NO, and particulate emissions
- load range?
- combustion timing?
- heat release rate?
- transient control?
- fuel?

Source: K. Akiyama et al., SAE 2001-01-0655.

Combustion modes of SI and CI engines

→ Gasoline vehicles

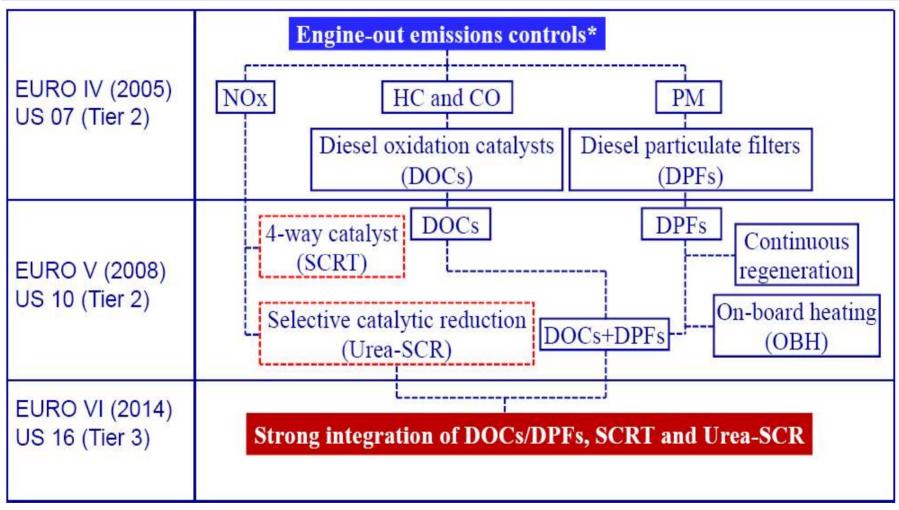
Diesel vehicles ←


Engine-out emissions from PC and LDVs

Engine-out emissions	Conventional gasoline engine	LB gasoline engine	GDI engine	Diesel engine
NO _x (ppm)	100 ~ 4,000	≈1,200	-	350 ~ 1,000
HC (ppm C)	500 ~ 5,000	≈1,300	-	50 ~ 330
CO (ppm)	0.1 ~ 6ª	≈1,300	-	300 ~ 1,200
O ₂ (%)	0.2 ~ 2	4 ~ 12	-	10 ~ 15
H ₂ O (%)	10 ~ 12	12	-	1.4 ~ 7
CO ₂ (%)	10 ~ 13.5	11	-	7
SO _x (ppm)	15 ~ 60	20	-	10 ~ 100
PM (mg/m³)	-	-	≈65	65
T (°C)	R.T. ~ 1,100	R.T. ~ 850	R.T. ~ 650	R.T. ~ 650
GHSV (h ⁻¹)	30,000 ~ 100,000	30,000 ~ 100,000	30,000 ~ 100,000	30,000 ~ 100,000
AFR	14.7	17	13 ~ 24 / 30 ~ 40	30 ~ 50

^a In %.

Gasoline automotives emissions controls



: Not yet commercialized.

^{*} Different from the conventional TWCs.

Diesel automotives emissions controls

^{*} Dependent strongly on engine duties.

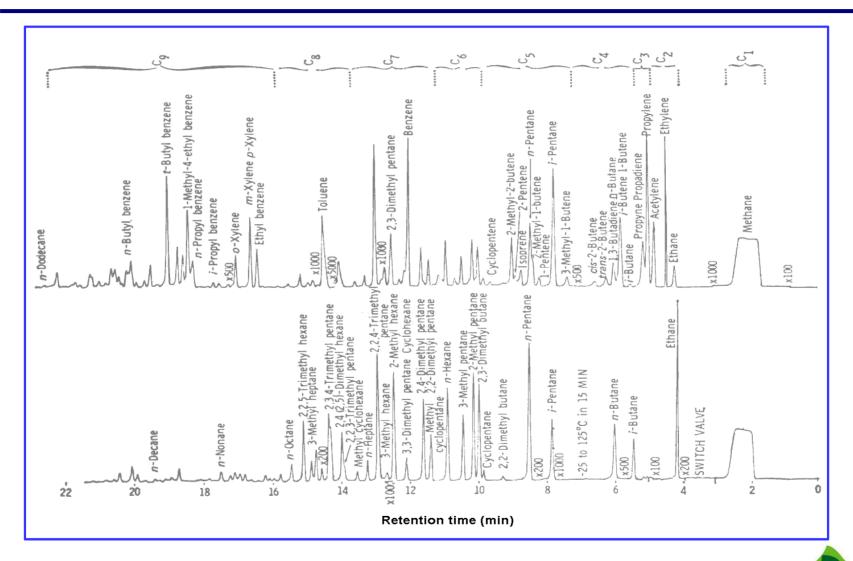
: for HDVs at present time.

Progression of exhaust emission standards for LD vehicles in USA

Model year	Emission standards (g/mil) ^a		ds (g/mil)ª	Comments	
	NO _x	CO	НС		
Pre-1968	6.2	90.0	15.0	Uncontrolled	
1970	-	34.0	4.1		
1972	-	28.0	3.0		
1973-74	3.1	28.0	3.0		
1975-76	3.1	15.0	1.5		
1977	2.0	15.0	1.5		
1980	2.0	7.0	0.41		
1981	1.0	3.4	0.41		
1991	1.0	3.4	0.41	Tier 0	
1994-96	0.4	3.4	0.25 ^b	Tier 1	
2001	0.2	3.4	0.075°	NLEV	
2004-09	0.07	3.4	0.075°	Tier 2 (all phase-in), NO _x fleet average	
2010-2015	0.07	3.4	0.30 ^{c,d}	Tier 2 (phase-in for NMOG), NO _x and NMOG fleet average	
2016°	? (↓)	? (=)	? (↓)	Tier 3	

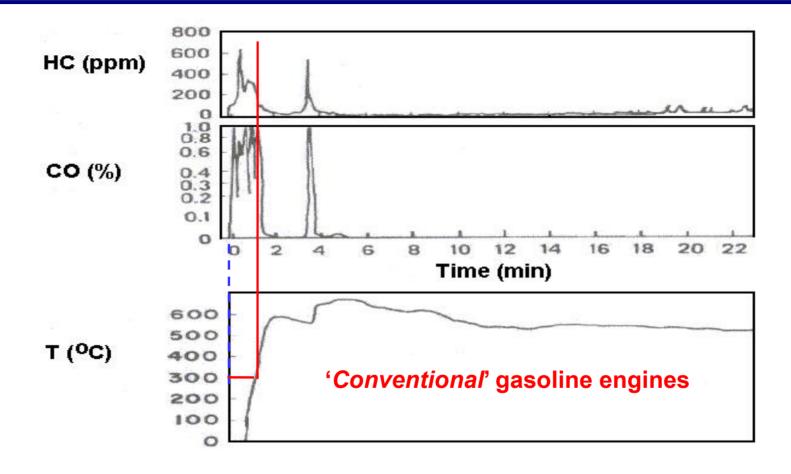
^a Applicable over the "useful life" defined as 50,000 miles or 5 years for automobiles.

e The President Obama announces "National Fuel Efficiency Policy", Press Release, The White House, May 19, 2009



^b Non-methane HCs (NMHC).

^c Non-methane organic gases (NMOG).


^d Sampling must be on the FTP cycle at -7°C and applicable at 120,000 miles.

Speciation of HCs in exhausts from SI engines

HC emissions trace over the FTP 75 cycle

The HCs are emitted within 2 min during the test cycle, and this amount is about 70~80% of the total HC emissions.

Sources of cold-start engine-out HC emissions

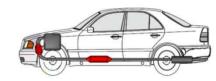
- 1. Misfiring
- 2. Incomplete flame propagation
- 3. Wall wetting
- 4. Rich fuel-air charge

Major contributions to the emissions

- 5. Crevice storage of the fuel-air charge and its release
- 6. Oil dilution with liquid and fuel vapor
- 7. Wall quenching
- 8. Poor post-flame oxidation
- 9. Exhaust valve leakage
- 10. Inlet valve leakage
- 11. Lubricating oil

Small contributions to the emissions, depending on engine-to-engine

Source: N.A. Henein and M.K. Tagomori, Progr. Energy Comb. Sci., 25 (1999) 563.

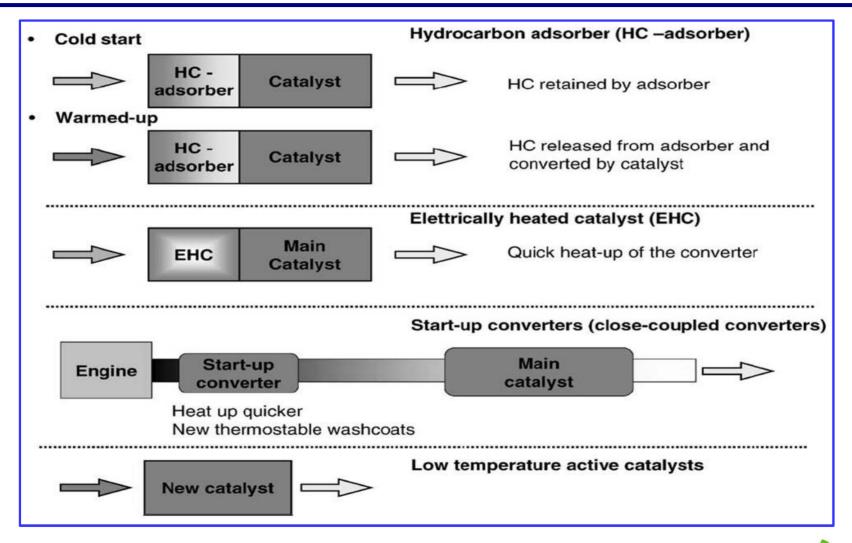

Historical strategies of HC emissions control

- 1. TWC-based approaches
 - Usage of advanced TWCs (a-TWC):

Addition of Pd into conventional TWC (c-TWC) with Rh and Pt

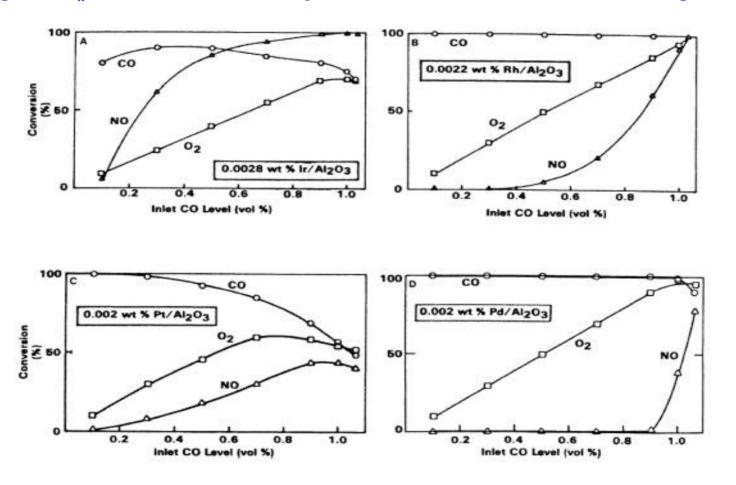
■ Modification in system configuration of a-TWCs:

■ Dual TWC system configuration:


- Increase in volumes and PGM loadings of a-TWCs
- 2. Mechanical heat-up of exhaust streams
 - **■** Electric heater

- 3. Trapping of HCs upon cold-start phase
 - **■** HC traps (adsorbers)

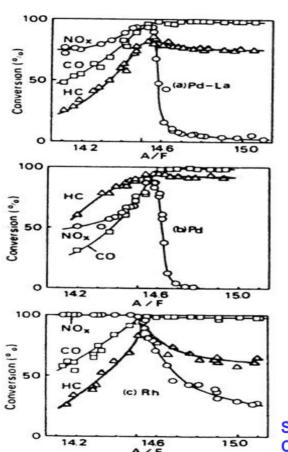
Proposals for HCs emissions control

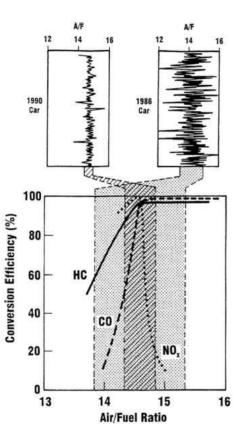

Source: J. Kaspar et al., Catal. Today, 77 (2003) 419.

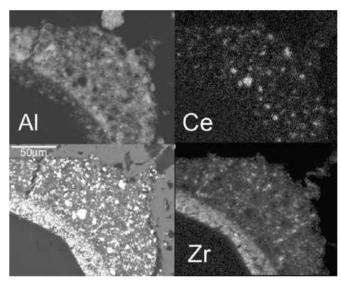
The first phase of catalytic emissions control

Ir: formation of volatile oxides

Rh: good NO_x control, but lower activity for olefin HCs conversion under oxidizing conditions

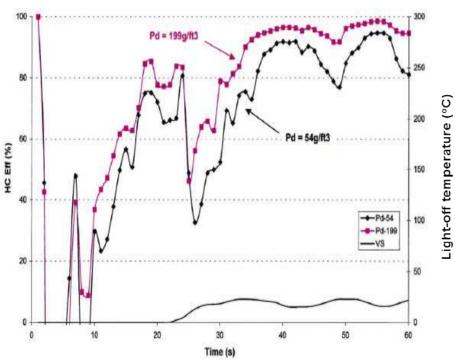



Source: K.C. Taylor and J.C. Schlatter, J. Catal., 63 (1980) 53.

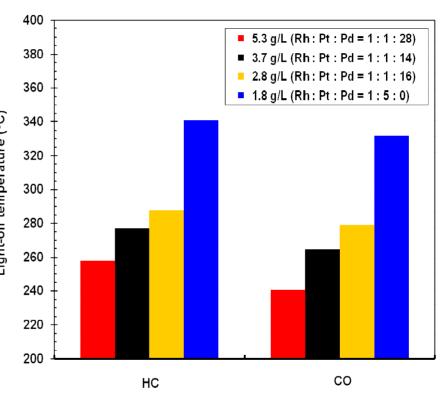

Advanced TWCs components and formulations

Pd: high HCs conversion Rh: low HCs conversion

- Stabilized alumina with La or Ba
- Oxygen storage components (OSCs): High SA ceria
- Layered washcoating

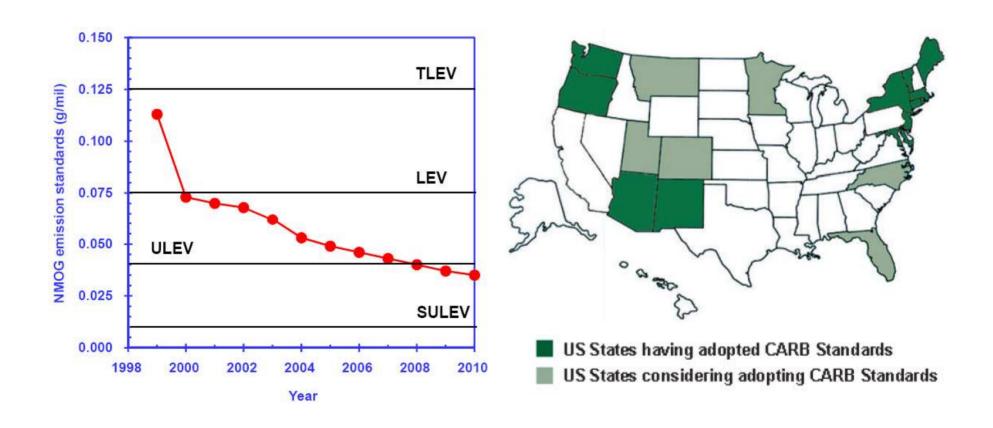

Source: M. Shelef and R.W. McCabe, Catal. Today, 62 (2000) 35.

Source: H. Muraki et al., Appl. Catal., 22 (1986) 325.

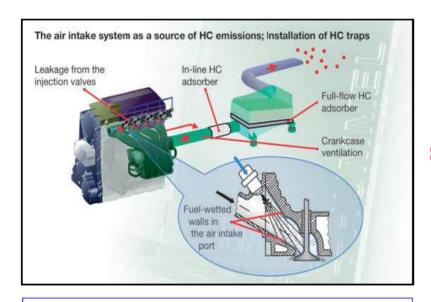

PGM loadings vs. HC & CO light-off performances

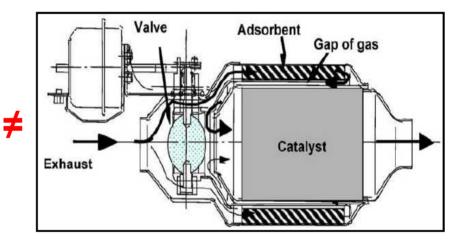
High Pd loadings: excellent HC conversion within very short time (50 s)

Source: H.S. Gandhi et al., J. Catal., 216 (2003) 433.


Advanced TWC system configuration: CCC

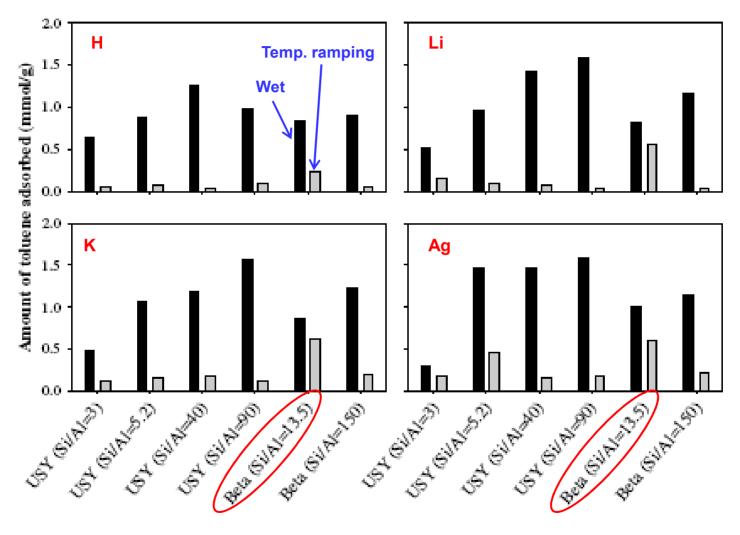
Source: J. Kaspar et al., Catal. Today, 77 (2003) 419.


California NMOG emission standards for LDVs


Source: Worldwide Emissions Standards 2010/2011: Passenger Cars & Light-Duty Vehicles, Dephi, MI, USA, 2010.

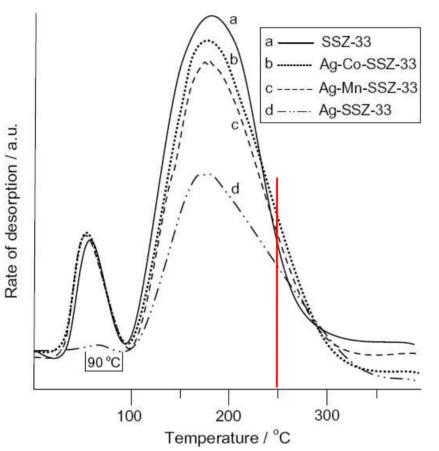
HC traps in auto industries

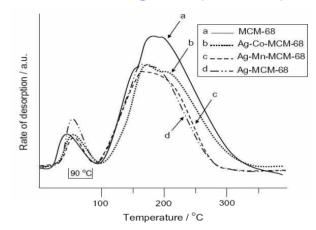
There are two kinds of the HC traps (adsorbers) for auto industry applications.

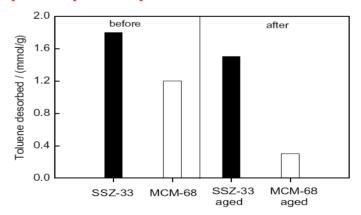

- A system to adsorb the hydrocarbons diffusing from the air intake on layers of activated carbon
- Usually installed directly over the air filter element.
- Being in force from 2007 in the States: NY, MA, VT, ME and CA.

This HC traps are of our particular interest.

Adsorption of toluene on USY and β zeolites

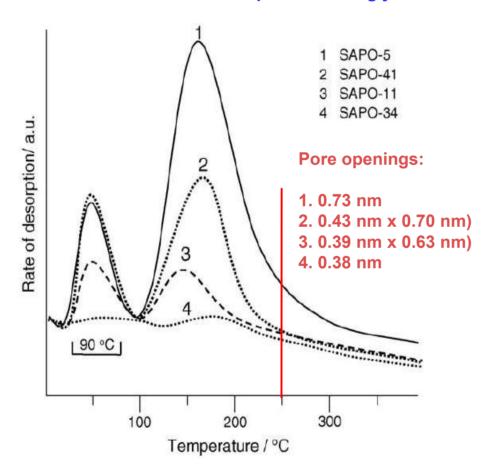


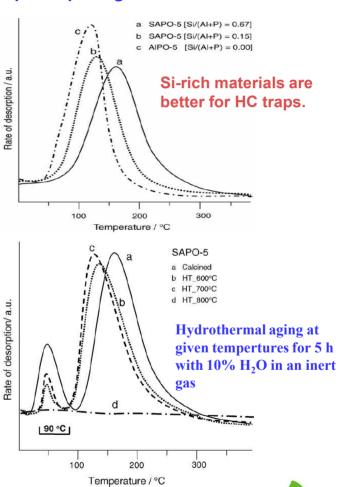

Source: J.H. Park et al., Micropor. Mesopor. Mat., 117 (2009) 178.


Adsorption of toluene on SSZ-33 and MCM-68

- The desorption temperatures are too low.
- Metal ions exchanged in the zeolites have not a preferred role in moving desorption temperatures up.

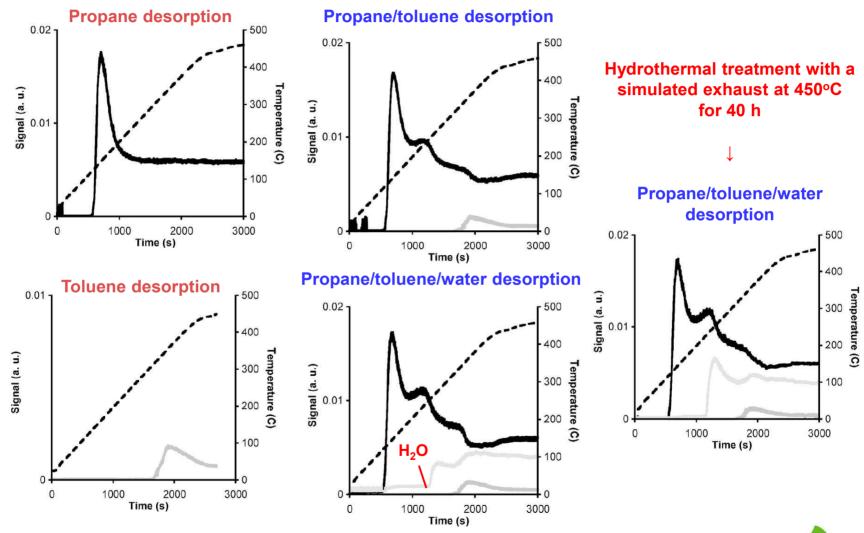
- Hydrothermal aging at 800°C for 5 h with 10% H₂O in an inert gas
- A peak desoprtion temperature = 150°C




Source: S.P. Elangovan et al., Micropor. Mesopor. Mat., 96 (2006) 210.

Adsorption of toluene on silicoaluminophosphates

- The desorption temperatures are too low.
- The extent of toluen adsorption is strongly assocated with the pore openings of SAPOs.



Source: S.P. Elangovan et al., Appl. Catal. B, 57 (2005) 31.

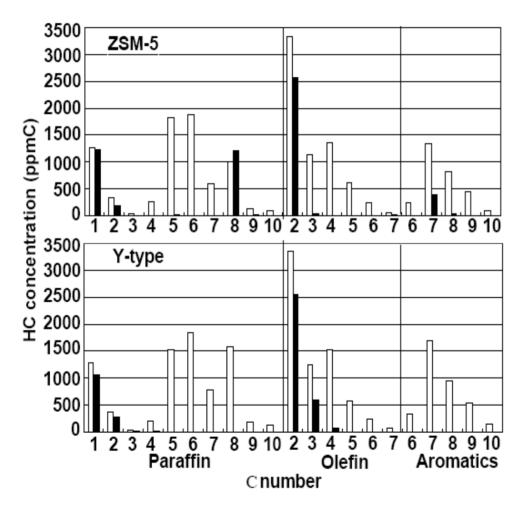
Adsorption of propane/toluene on Cs-MOR

Adsorption of toluene on CIT-1

- The desorption temperatures are too low.
- An acidity regarding framework AI sites has an influence on the adsorption strength of toluene.

Sample	Chemical analysis (ICP-AES)		N ₂ adsorption data		Amount of acid sites ^a (µmol/g)
	Si/B	Si/Al	BET surface area (m²/g)	Micropore volume (cm³/g)	(minor/g)
B-CIT-1	26.6	-	627	0.18	30
Al-CIT-1_DEX	∞	55	640	0.18	90
Al-CIT-1_INS	∞	37	648	0.17	40
Al-CIT-1_IMP	∞	173	634	0.15	20

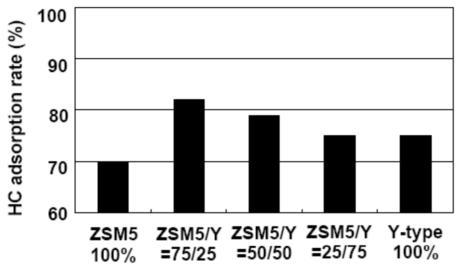
^a Obtained from NH₃-TPD by considering the high temperature peak alone.


Sample	Amount of toluene adsorbed (mmol/g)	Amount of 2,2,4-TMP adsorbed (mmol/g)	Toluene desorption characteristics ^a		
	(Peak maximum (°C)	Desorption end temperature (°C)	
Al-CIT-1_DEX	0.60	0.37	134 (126)	223 (188)	
Al-CIT-1_INS	0.47	0.06	145 (136)	226 (215)	
Al-CIT-1_IMP	0.58	0.17	125 (125)	195 (195)	

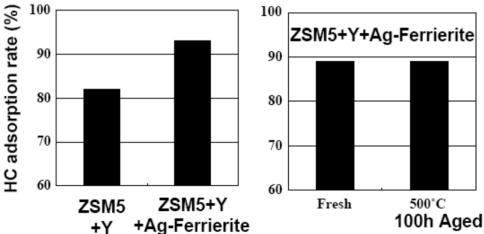
^a The data for the corresponding hydrothermally treated sample is given in the parentheses.

Source: T. Mathew et al., Micropor. Mesopor. Mat., 129 (2010) 126.

Adsorption of HCs on MFI and FAU



- C₁ is passed through all the zeolites.
- All the zeolites are not good for C₂
 paraffins and olefins, particularly C₂
 olefins.
- The Y zeolite adsorbs preferably C₈
 paraffins and C₇ aromatics.
- The ZSM-5 is good for C₃-C₄ olefins.
- C₄-C₇ paraffins are well trapped on all the zeolites.


Source: T. Kanazawa, Catal. Today, 96 (2004) 171.

Adsorption of HCs on a mixture of zeolites

- The mixture is a good HC trap, and this formulation was applied to the Toyota Prius to meet the SULEV standards in May 2000.
- The Ag-FER can adsorb selectively C₂
 olefins.
- The three mixture system has a good hydrothermal stability; however, the aged temperature is somewhat low.

Source: T. Kanazawa, Catal. Today, 96 (2004) 171.

Conclusions: Materials for HC traps

- **■** Fast rate of HCs adsorption
- High adsorption capacity
- Good robustness to HCs (paraffins, olefins and aromatics)

Exhausts contain $C_1 \sim C_{11}$ HCs, but $C_2 \sim C_9$ HCs are targeted.

- Strong adsorption strength so as to be:
 - (i) desorbed at temperatures > 175°C (Modern TWCs require 175°C or slightly above for an initiation)
 - (ii) retained up to temperatures = 250~300°C
- Completely reversible in HCs adsorption and desorption
- Incombustible even in the presence of O₂ (0.2~2%)
- Strong tolerance to H₂O vapor (10~12%)
- Good or excellent hydrothermal stability

Perhaps, this may be solved through aftertreatment system designs.

- Good resistance to thermal shocks (hot spots)
- Easy to fabricate it to low pressure drop monoliths
- Minimal adsorption of CO

