Mobile Emissions Regulations and Legislation

Representatives of automobiles

Diesel fueled car: Volkswagen Jetta TDI

LPG fueled car: Camry of Toyota Motors

H₂-powered car: BMW 750hL

CNG-powered car: Honda Civic

Gasoline-Electric Hybrid Car: Prius of Toyota Motors (Oct. 2003)

Representative mobile emission sources

Vehicles, trains and motor bicycles

- Gasoline engines
- Diesel engines
- CNG engines
- LPG engines

Ships

- Cargo vessels
- Tankships (Oil tankers)
- Ocean liners
- Cruise ships

Worldwide markets of gasoline and diesel automotives

Fuel economy and mileage CO₂ emission limits*

For light-duty vehicles - new passenger cars and vans

Cour	itry		Implementation														
		2004	2005	2007	2008	2010	2012	2015	2016	2017	2020	2021					
EII	Cars		186		140		132.2	130 ^a				95					
EU	Vans			203			180.2			175	147						
US	SA ^b	27.5		27.5		35.5	33.6	36.4c	38.2	39.6	44.2	46.1					

Note. The unit is the respective g CO₂/km and mpg (mile per gallon fuel) for EU and USA.

* In USA, mileage CO₂ emission limits were phased-in to PCs and LDTs from MY 2009 and will be complete in 2016.

^a This target equates approximately 17.9 km/L for petrol cars.

^b Known as the corporate average fuel economy (CAFE) program since 1975.

^c This mpg corresponds to ca. 146 g CO₂-e/km.

Future USA CO₂ emission legislation

Source: NHTSA MY 2017 - 2025 Factsheets

CO₂ emissions from domestic sales cars

Car model	Car maker	Fuel	Engine Displacement (cm³)	Fuel economy (km/L)	CO ₂ emissions (g/km)
Prius Hybrid	Toyota	Gasoline	1798	29.2	80
Avante 1.6 LPI Hybrid	Hyundai	LPG	1591	17.8	99
Civic Hybrid	Honda	Gasoline	1339	23.2	101
Morning 1.0	KIA	Gasoline	999	21.2	110
Martiz 1.0 DOHC MT	GM-Daewoo	Gasoline	995	21.0	111
Golf 1.6 TDI Bluemotion	Volkswagen	Diesel	1598	21.9	122
308 1.6 HDi MCP E5	Peugeot	Diesel	1560	21.2	127
Accent 1.6 GDI	Hyundai	Gasoline	1591	18.2	128
30 1.6	Hyundai	Diesel	1582	20.5	131
Avante 1.6 GDI	Hyundai	Gasoline	1591	16.5	142
Golf 2.0 TDI	Volkswagen	Diesel	1968	17.9	150
K5 2.0	KIA	Gasoline	1998	13.8	170
SM3	Renault-Samsung	Gasoline	1998	13.2	177
Passat 2.0 TDI	Volkswagen	Diesel	1968	15.1	178
Sonata 2.0	Hyundai	Gasoline	1998	13.0	180
Camry	Toyota	Gasoline	2494	12.0	196
K7 2.7	KIA	Gasoline	2656	11.0	212
Eguus 3.8	Hyundai	Gasoline	3887	9.3	252
Benz E300	Benz	Gasoline	3498	9.2	254

Source: http://bpm.kemco.or.kr/transport/.

Implementation of automotive emission standards

	Year													
	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	
Emission standard California	LEV Π^a													
USA	Tier 2 ^b										Tier 3cd		Tier 4 ^d	
EU	EURO III ^e	EURO IV			EURO V ⁸		EURO VI						EURO VII	

Note. LEV: low emission vehicle.

EURO VI: $2010 \rightarrow 2012 \rightarrow 2014$ (as of 2015) Tier 3: $2014 \rightarrow 2016$ (as of 2015)

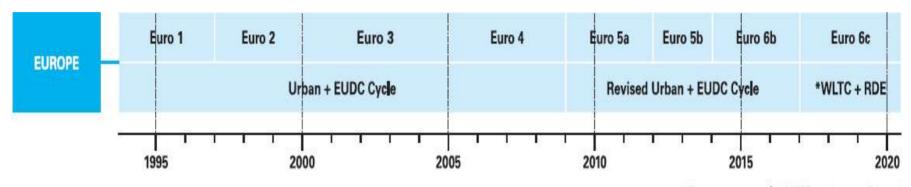
Source: M.H. Kim, Korean J. Chem. Eng., 24 (2007) 209.

[&]quot;Phase-in until 2010. bPhase-in until 2009.

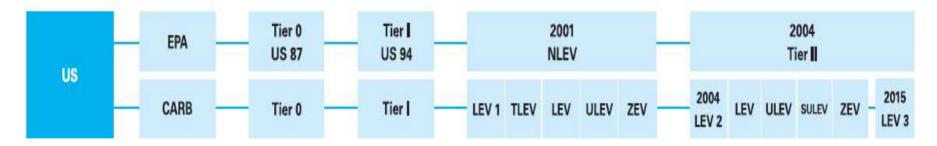
^{&#}x27;Interim step prior to Tier 4 standards.

^dBeing underway to determine limit values for engine-out emissions.

^eFrom 2000 to 2004.


¹2006 for Korean (Korean automobile manufacturers association, KAMA) car makers.

^gA preliminary draft proposal for the standards has been produced by the European Commission on July, 2005.


Implementation plans of automotive standards

EURO VI: 2010 \rightarrow 2012 \rightarrow 2014 (as of 2012)

Tier 3: 2014 \rightarrow 2016 (as of 2012)

* Euro 6c test cycle WLTC: to be confirmed

Source: M.H. Kim, Korean J. Chem. Eng., 24 (2007) 209 and updated as of 31 December 2015.

Tier 2 full useful life emission standards

	Bin#		L	imit values (g/mil	e)	
	DIII#	NO_x	NMOG	CO	НСНО	PM
Temporary Bins	11 ^a	0.9	0.280	7.3	0.032	0.12
	$10^{b,c,d}$	0.6	0.156/0.230	4.2/6.4	0.018/0.027	0.08
	$9^{b,e,f}$	0.3	0.090/0.180	4.2	0.018	0.06
Permanent Bins	8e	0.20	0.125/0.156	4.2	0.018	0.02
	7	0.15	0.090	4.2	0.018	0.12 0.03 0.04 0.02 0.02 0.0 0.0 0.0 0.0
	6	0.10	0.090	4.2	0.018	0.01
	5	0.07	0.090	4.2	0.018	0.01
	4	0.04	0.070	2.1	0.011	0.01
	3	0.03	0.055	2.1	0.032 0.018/0.027 0.018 0.018 0.018 0.018 0.018	0.01
	2	0.02	0.010	2.1	0.004	0.01
	1	0.00	0.000	0.0	0.000	0.12 0.08 0.06 0.02 0.01 0.01 0.01

Note. NMOG: non-methane organic gases. Multiple each limit value by 0.622 to compare it to that in Table 2.

Source: M.H. Kim, Korean J. Chem. Eng., 24 (2007) 209.

[&]quot;The Bin # applies only to MDPVs and expires after model year 2008.

^bDeleted at end of 2006 for LDVs and LLDTs, and 2008 for HLDTs.

^{&#}x27;The higher NMOG, CO and HCHO values apply only to HLDTs and expire after 2008.

^dOptional temporary NMOG standard of 0.280 g/mile applies for qualifying LDT4s only.

eThe higher NMOG value applies only to HLDTs and expires after 2008.

Optional temporary NMOG standard of 0.130 g/mile applies for qualifying LDT2s only.

Tier 2 exhaust averaging sets

						,	/ear			
_	2001	2002	2003	2004	2005	2006	2007	2008	2009+later	Average fleet NO _x standard (g/mile)
LDV/LLDT (Interim)	NLEV	NLEV	NLEV	75% max.	50% max.	25% max				0.30
LDV/LLDT (Tier 2+Evap.)	earl a	y banking a	a	25%	50%	75%	100%	100%	100%	0.07
HLDT (Tier 2+Evap.)	earl a	y <i>banking</i> a	a	a	a	a	a	50%	100%	0.07^b
HLDT (Interim)	Tier 1	Tier 1	Tier 1	25%	50%	75%	100%	50%		$0.20^{b,x}$
MDPV (Interim)	HDE	HDE	HDE	c,d	d	d	d	max.		
MDPV	earl	y banking						50%	100%	0.07
(Tier 2+Evap.)	a	a	a	a	a	a	a			

Note. Bold lines around shaded areas indicate averaging sets.

Source: M.H. Kim, Korean J. Chem. Eng., 24 (2007) 209.

[&]quot;Alternative phase-in provisions permit manufacturers to deviate from the 25/50/75% 2004-2006 and 50% 2008 phase-in requirements and provide credit for phasing in some vehicles during one or more of these model years.

^bHLDTs and MDPVs must be averaged together.

[&]quot;Required only for manufacturers electing to use optional NMOG values for LDT2s or LDT4s and MDPV flexibilities during the applicable interim program and for vehicles whose model year commences on or after the fourth anniversary date of the signature of this rule. "Diesels may be engine-certified through the 2007 model year.

^e0.60 NO_x cap applies to balance of LDT3s/LDT4s, respectively, during the 2004-2006 phase-in years.

Current and future EU standards for passenger cars and light commercial vehicles

Tier	Category	Class	Reference weight	Limit values for mandatory tailpipe emissions													
			(kg)	CO (g/km)		TH	IC .	NMHC		NO_x		HC + NO _x		PM		PM	
						(g/km)		(g/km)		(g/km)		(g/km)		(g/km)		(#/km)	
				Gasoline	Diesel	Gasoline	e Diesel	Gasoline	Diesel	Gasoline	Diesel	Gasoline	Diesel	Gasoline	Diesel	Gasoline	Diesel
EURO III	M^{a}		All	2.30	0.64	0.20	125	8=1	ia s	0.15	0.50	SEE.	0.56	25	0.05	=	T01
	N_1^b	I	$RW \le 1,305$	2.30	0.64	0.20	5. 75 5		85	0.15	0.50	10 	0.56	s 	0.05	-	55 8
		П	$1,305 < RW \le 1,760$	4.17	0.80	0.25	-	·	÷	0.18	0.65	· —	0.72	-	0.07	-	-
		Ш	$1{,}760 \le RW$	5.22	0.95	0.29	122		() <u>—</u>	0.21	0.78	-	0.86		0.10	2	=
EURO IV	M^{a}		All	1.00	0.50	0.10	144		22	0.08	0.25	-	0.30	-	0.025	=	223
	N_1^b	I	RW ≤ 1,305	1.00	0.50	0.10	920	823	8 <u>22</u>	0.08	0.25	82	0.30	8 <u>25</u>	0.025	25	<u>225</u> 3
		П	$1,305 < RW \le 1,760$	1.81	0.63	0.13	2 73	877	877	0.10	0.33	877	0.39	877	0.04		55 83
		Ш	1,760 < RW	2.27	0.74	0.16	100		8.00	0.11	0.39	8 77	0.46	8 75	0.06	-	51 78
EURO V	\mathbf{M}^{a}		All	1.00	0.50	0.100	1 5.	0.068	2 17.	0.060	0.180	<u> 25–</u>	0.230	0.005 ^e	0.005		
	N_1^b	I	$RW \le 1,305$	1.000	0.500	0.100	-	0.068	-	0.060	0.180	6 <u>-</u>	0.230	0.005°	0.005		
		П	$1,305 < RW \le 1,760$	1.810	0.630	0.130	100	0.090	<u> </u>	0.075	0.235	1 4	0.295	0.005 ^c	0.005		
		Ш	1,760 < RW	2.270	0.740	0.160	122	0.108	<u> 22</u>	0.082	0.280	8 <u>2</u>	0.350	0.005 ^e	0.005		
EURO VI	\mathbf{M}^{a}		All	1.000	0.500	0.100	_	0.068	_	0.060	0.080	-	0.170	0.045°	0.045	6.0x10 ¹¹	6.0x10 ¹¹
	N_1^b	I	RW ≤ 1,305	1.000	0.500	0.100		0.068	2.50	0.060	0.080	-	0.170	0.045 ^e	0.045	6.0x10 ¹¹	6.0x10 ¹¹
		П	$1,305 < RW \le 1,760$	1.810	0.630	0.130	1.00	0.090	S 	0.075	0.105	. 	0.195	0.045 ^e	0.045	6.0x10 ¹¹	6.0x10 ¹¹
		Ш	1,760 < RW	2.270	0.740	0.160	-	0.108	S -C	0.082	0.125	8-	0.215	0.045 ^e	0.045	6.0x10 ¹¹	6.0x10 ¹¹

^a Except vehicles the maximum mass of which exceeds 2,500 kg.

Source: M.H. Kim, Korean J. Chem. Eng., 24 (2007) 209 and updated as of 31 December 2014.

^b And those Category M vehicles which are specified in note ^a.

^e PM mass standards apply only to vehicles which use lean burn (LB) direct injection engines.

Joint rulemaking for automotive emission standards

Recently, the US and EU began a joint rulemaking process to harmonize fuel economy, greenhouse gases (GHG) emissions and auto exhaust emissions regulations.