Low-Temperature Catalytic CO Oxidation #### We are focused mainly on: - Supported Au nanoparticles - Supported or promoted CuO systems - Unsupported and supported CoO_x catalysts # Low-temperature CO oxidation in environmental and industrial catalysis - ☐ Engine-out emissions control for advanced vehicles with homogeneous charge compression ignition (HCCI) engines - ☐ Reformer product purification for polymer electrolyte fuel cells - □ Indoor air cleaning - □ Gas sensors - ☐ Gas masks - ☐ Prevention of the deactivation of CO₂ lasers # The need of low-temperature CO oxidation in fuel cell road applications Hydrogen-fuelled polymer electrolyte membrane fuel cells, representatively proton-exchange membrane fuel cells (PEMFCs), have been recognized to be the most environmentally-benign energy conversion system for road vehicle applications in the near future. The on-board production of H_2 from less explosive gaseous or liquid hydrocarbons using a systematic combination of catalytic steam reforming processes with a water-gas shift reaction needs to overcome some technical barriers associated with the distribution and storage of H_2 for commercialization of the fuel cell systems. The reformer gas products contain large amounts of CO (typically 0.5 - 2%) by which anodic Pt electrocatalysts in the fuel cell systems are known to be significantly deactivated. In an attempt to lower CO in H_2 -rich gas streams to acceptable levels less than 100 ppm, preferential oxidation (designated to "PrOx") of CO has been extensively studied using a variety of catalysts that must possess high activity and selectivity in the temperature range of $70 - 300^{\circ}$ C because the PrOx catalysts are placed between the reformer and the fuel cell system operated at the respective temperatures ranging from 70 - 130 and $200 - 300^{\circ}$ C. #### **Schematic of fuel cell system** An electrochemical engine produces electricity from a fuel. ### Pathways of producing H₂ #### Unit cell structure of PEM fuel cells #### How do PEMFCs work? Fuel Cells produce electricity through the electrochemical oxidation of H₂ over Pt-based electrocatalyst. #### Stack structure of PEM fuel cells #### An integrated fuel processor for PEMFCs applications #### Typical end products of fuel reformers for PEMFCs | Gas composition and operating temperature window | PEMFC | | | |--|----------|--|--| | CO (%) | 0.5 ~ 2 | | | | H ₂ (%) | 45 ~ 75 | | | | CO ₂ (%) | 15 ~ 25 | | | | H ₂ O (%) | 15 ~ 30 | | | | NO _x (ppm) | n.d. | | | | HC ^a (%) | trace | | | | PM (mg/m³) | n.d. | | | | <i>T</i> (°C) | 70 ~ 300 | | | ^a Unconverted or burned. - Reforming reactions of HCs and alcohols are required to produce H₂ for PEMFCs. - The concentration of CO from the fuel reformers must be less than 100 ppm to prevent and/or lower the deactivation of Pt-based electrocatalysts in the PEMFCs. ### **Energy density of typical fuels** | Fuel | Energy produced during combustion (kJ/g) | | | | | | | |---|--|--|--|--|--|--|--| | Hydrogen gas (H ₂) | 143 | | | | | | | | Methane gas (CH ₄) | 56 | | | | | | | | Petrol (Octane, C ₈ H ₁₈) | 48 | | | | | | | | Coal (Carbon, C) | 33 | | | | | | | | Ethanol (C ₂ H ₅ OH) | 30 | | | | | | | | Methanol (CH ₃ OH) | 23 | | | | | | | | Carbohydrates (e.g. C ₆ H ₁₂ O ₆) | 16 | | | | | | | | Carbon monoxide gas (CO) | 10 | | | | | | | ## **Hydrogen refueling station in Germany** #### Fear of hydrogen's explosiveness Hydrogen Fuel Leak, 3.4 lbs 175,000 BTU Gasoline Fuel leak 5 liters 70,000 BTU - Comparison of fuel leaks - Hydrogen fuel leak with all fail safes disengaged. The safety in handling and storages is a big challenge to the widespread use of H₂. ### PEM fuel cell anode feed gas specifications | Component | Specification | Comments | | | | | | | |----------------------------------|-----------------|--|--|--|--|--|--|--| | Hydrogen | 50-100% | Cell performance not adversely effected by
moderate dilution | | | | | | | | CO | max. 10-100 ppm | Severe poison to electrocatalyst (partly reversible) Tolerance level dependent on cell design and operating conditions. | | | | | | | | N ₂ , CO ₂ | 0-50% | Relatively inert | | | | | | | | Water | Variable | Humidification necessary. Requirements vary with electrode design. | | | | | | | | Methane | 0% desirable | Relatively inert | | | | | | | | Formic acid | 0% | Severe poison (irreversible) | | | | | | | | Methanol | 0% desirable | Reversible performance loss at 5000 ppm | | | | | | | | Formaldehyde | 0% desirable | Reversible performance loss at 5000 ppm | | | | | | | | Methyl formate | 0% desirable | Reversible performance loss at 5000 ppm | | | | | | | Amphlett et al., Int. J. Hydrogen Energy, 12 (1996) 673. #### Catalysts employed for CO conversion Composition and BET specific surface areas of the Au/α-Fe₂O₃, CuO-CeO₂ and Pt/γ-Al₂O₃ catalysts | Catalyst | Composition | BET specific surface area (m ² g ⁻¹) | | | | | |-------------------------------------|-------------|---|--|--|--|--| | Au/α-Fe ₂ O ₃ | 2.9 wt.% Au | 49.8 | | | | | | CuO-CeO ₂ | 1.9 wt.% Cu | 19.5 | | | | | | Pt/γ - Al_2O_3 | 5.0 wt.% Pt | 224.0 | | | | | Avgouropoulos et al., Catal. Today, 75 (2002) 157. **Total surface area by BET measurements** Metals surface area? # Volumetric adsorption technique for metal surface area measurements FIG. 1. Adsorption isotherms on 0.81% Pt/SiO₂ after either pretreatment II (HTR) or I (HTR). (\bullet) H₂ titration–N₂O; (\blacksquare) H₂ adsorption; (\blacktriangle , \triangle) CO adsorption; (\spadesuit , \bigcirc) O₂ adsorption; (\times) H₂ titration–O₂. Open and closed symbols present the respective total and reversible gas uptakes at 300 K. Kim et al., J. Catal., 204 (2001) 348. ### How has a Pt_s fraction been determined to date? $$H_2$$ adsorption: $Pt_s + \frac{1}{2}H_2 \rightarrow Pt_sH$ - One-to-one stoichiometry. - Independent of Pt crystallite sizes. O_2 adsorption and H_2 titration: $Pt_s + \frac{1}{2}O_2 \rightarrow Pt_sO + \frac{3}{2}H_2 \rightarrow Pt_sH + H_2O_{(ad)}$ - $O/Pt_s = 1 (O/Pt_s = 0.5).$ - Dependent on Pt crystallite sizes. CO adsorption: Pt_s + CO -> Pt_sCO - $-CO_{irr}/Pt_s = 1 (CO_{irr}/Pt_s = 0.5).$ - Dependent on Pt crystallite sizes. #### Determination of metal dispersion and surface area | | | Gas uptake (μ mol/g) | | | | Dispersion based on ^b | | | | | | | | |--------|--------------|---------------------------------------|--------------------|------------------------------------|----------------|-------------------------------------|------------------|---|------------------------|------------------------|-------------------------|-----------|---| | Sample | Pretreatment | H ₂ -N ₂ O titr | H ₂ Tot | O ₂ Irr | CO Irr | H ₂ -O ₂ titr | "O" ^a | H _{titr} -N ₂ O
Pt | H _{tot}
Pt | O _{irr}
Pt | CO _{irr}
Pt | "O"
Pt | H _{titr} -O ₂
Pt | | A | II (HTR) | 37.3 ± 0.1 | | | | | | 0.60 | | | | | | | | I (HTR) | | 12.7 ± 0.1 | $11.3 \pm 0.1 \\ 11.4 \pm 0.1^{c}$ | 18.6 ± 0.2 | 34.5 ± 0.2
34.1 ± 0^d | 24.2° | | 0.61 | 0.55
0.55^{c} | 0.45 | 0.58 | 0.55
0.55^d | | В | II (HTR) | 37.7 | | | | | | 0.60 | | | | | | | C | I (HTR) | | 12.7 ± 0.1 | | | | | | 0.61 | | | | | | D | I (HTR) | | | 11.6 | | | | | | 0.56 | | | | | E | I (HTR) | | | 11.4 | | | | | | 0.55 | | | | | F | I (HTR) | | | 11.3^{c} | | | | | | 0.54 | | | | | G | I (HTR) | | | | 18.3 | | | | | | 0.44 | | | | E | I (HTR) | | | | | 34.2 | | | | | | | 0.55 | | F | I (HTR) | | | | | 34.2^{d} | | | | | | | 0.55^{d} | Note. No irreversible CO adsorption on pure SiO2 after any pretreatment. ^a Atomic O via N₂O decomposition at 363 K measured gravimetrically. ^b Assuming H/Pt_s = O/Pt_s = CO/Pt_s = 1. ^c At 363 K. ^d H₂ titration at 300 K after exposure to O₂ at 363 K. #### Effect of CO₂ on the catalytic CO conversion Fig. 2. Variation of the CO and O_2 conversion and of the selectivity with the reaction temperature for the selective oxidation of CO, at $W/F = 0.144 \,\mathrm{g\,s\,cm^{-3}}$, over the $\mathrm{Au/\alpha\text{-}Fe_2O_3}$ (\triangle), $\mathrm{CuO\text{--}CeO_2}$ (\bigcirc), and $\mathrm{Pt/\gamma\text{-}Al_2O_3}$ (\square) catalysts in the absence of $\mathrm{CO_2}$ (filled symbols) and in the presence of 15 vol.% $\mathrm{CO_2}$ in the reactant feed (open symbols). #### **Basical conditions:** $$[CO] = 1\%,$$ $$[O_2] = 1.25\%$$ and $$[H_2] = 50\%.$$ Avgouropoulos et al., Catal. Today, 75 (2002) 157. #### Effect of H₂O on the catalytic CO conversion Fig. 3. Variation of the CO and O_2 conversion and of the selectivity with the reaction temperature for the selective oxidation of CO, at $W/F = 0.144 \,\mathrm{g\,s\,cm^{-3}}$, over the $\mathrm{Au}/\alpha\text{-Fe}_2\mathrm{O}_3$ (\triangle), $\mathrm{CuO-CeO}_2$ (\bigcirc), and $\mathrm{Pt}/\gamma\text{-Al}_2\mathrm{O}_3$ (\square) catalysts in the presence of 15 vol.% CO_2 (solid lines) and in the presence of both 15 vol.% CO_2 and 10 vol.% $\mathrm{H}_2\mathrm{O}$ in the reactant feed (dotted lines). #### **Basical conditions:** $$[CO] = 1\%,$$ $$[O_2] = 1.25\%$$ and $$[H_2] = 50\%.$$ The water gas shift reaction occurs on the supported Pt metals: $$CO + H_2O \rightarrow CO_2 + H_2$$ Avgouropoulos et al., Catal. Today, 75 (2002) 157. #### CO oxidation over a 1 wt% CuO/CeO₂ catalyst #### After calcination at 773 K in air for 2 h #### **Reaction conditions:** $$[CO] = 1\%,$$ $$[O_2] = 1.25\%$$ and $$[H_2] = 50\%.$$ -The deactivation is associated with: accumulation of hydroxyls on the interfacial active sites and/or - sintering of CuO sites. Martinez-Arias et al., Appl. Catal. B, 65 (2006) 207. #### CO oxidation over CuO/CeO₂ catalysts #### After calcination at 450°C in air for 4 h Reaction conditions: [CO] = 1% and $[O_2] = 1\%$. Fig. 6. Effect of copper loading on the CO oxidation for CuO/CeO₂ catalysts prepared by (A) co-precipitation; (B) deposition-precipitation; (C) impregnation; (■) 2.5 wt.% Cu; (●) 5 wt.% Cu; (▲) 10 wt.% Cu. Tang et al., Catal. Today, 93 (2004) 191.