

Engine price (2.0 L Smartstream G2.0): ≈ 1,600,000 Won

Presentation Overview

- **Conventional ICEs vehicle**
- Engine-out emissions and their regulations
 - Gasoline engine vehicles
 - Diesel engine vehicles
- Catalytic aftertreatment technology
- **HCCI** engines development
- **Update** on recent progress
- **Concluding remarks**

Fuels and Vehicle Propulsion

Fuels:

- o Gasoline
- o Diesel
- o Methanol
- o Compressed natural gas (CNG)
- o Hydrogen
- o Electric power

Vehicle propulsion system:

- o Spark ignition internal combustion engines (SI-ICEs)
- o Compression ignition ICEs (CI-ICEs)
- o ICE-hybrids (combined ICE and battery power plants)
- o Fuel cell (FC) hybrids (combined FC and battery power plants)
- o Battery-powered electric vehicles

Gasoline-Electric Hybrid Car Prius of Toyota Motors (October 2003)

H₂-Powered BMW 750hl

Gasoline fueled car: Sonata of Hyundai Motors

Diesel fueled car: Volkswagen Jetta TDI

LPG fueled car: Camry of Toyota Motors

Future Challenges to Automobile Industries

AFR vs. Gasoline Engine-out Emissions

Components and Compositions of Engine-out Emissions from Current ICEs

emissions engine NO _x (ppm) 100 ~ 4,000 ≈1,200 350 ~ 1,000 HC (ppm C) 500 ~ 5,000 ≈1,300 50 ~ 330 CO (ppm) 0.1 ~ 6 ≈1,300 300 ~ 1,200 O _x (%) 0.2 ~ 2 4 ~ 12 10 ~ 15 H, O (%) 10 ~ 12 12 1.4 ~ 7 CO _x (%) 10 ~ 13.5 11 7 SO _x (ppm) 15 ~ 60 20 10 ~ 100 PM (mg/m³) - 65					
HC (ppm C) $500 \sim 5,000$ $\approx 1,300$ $50 \sim 330$ CO (ppm) $0.1 \sim 6$ $\approx 1,300$ $300 \sim 1,200$ $O_{2}(\%)$ $0.2 \sim 2$ $4 \sim 12$ $10 \sim 15$ $H_{2}O_{2}(\%)$ $10 \sim 12$ 12 $1.4 \sim 7$ $CO_{2}(\%)$ $10 \sim 13.5$ 11 7 SO_{x} (ppm) $15 \sim 60$ 20 $10 \sim 100$ PM (mg/m³) $ 65$	Engine-out emissions	Gasoline engine		Diesel engine	HCCI engine
CO (ppm) $0.1 \sim 6$ $\approx 1,300$ $300 \sim 1,200$ O_{2} (%) $0.2 \sim 2$ $4 \sim 12$ $10 \sim 15$ $H_{2}O$ (%) $10 \sim 12$ 12 $1.4 \sim 7$ CO_{2} (%) $10 \sim 13.5$ 11 7 SO_{x} (ppm) $15 \sim 60$ 20 $10 \sim 100$ PM (mg/m³) $ 65$	NO _x (ppm)	100 ~ 4,000	≈1,200	350 ~ 1,000	
O_{2} (%) $O_{2} \sim 2$ $O_{2} \sim 15$ O_{2} (%) $O_{2} \sim 10$ $O_{2} \sim 10$ $O_{2} \sim 10$ O_{2} (%) $O_{2} \sim 10$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{3} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{3} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{3} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{3} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{3} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{3} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{3} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{3} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{3} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{2} \sim 100$ $O_{3} \sim 100$ $O_{2} \sim 1000$	HC (ppm C)	500 ~ 5,000	≈1,300	50 ~ 330	
H_2O (%) $10 \sim 12$ 12 $1.4 \sim 7$ CO_2 (%) $10 \sim 13.5$ 11 7 SO_x (ppm) $15 \sim 60$ 20 $10 \sim 100$ PM (mg/m³) - - 65	CO (ppm)	0.1 ~ 6	≈1,300	300 ~ 1,200	
CO_2 (%) $10 \sim 13.5$ 11 7 SO_x (ppm) $15 \sim 60$ 20 $10 \sim 100$ PM (mg/m³) - - 65	O ₂ (%)	0.2 ~ 2	4 ~ 12	10 ~ 15	
SO _x (ppm) 15 ~ 60 20 10 ~ 100 PM (mg/m³) - - 65	H ₂ O (%)	10 ~ 12	12	1.4 ~ 7	
PM (mg/m³) 65	CO ₂ (%)	10 ~ 13.5	11	7	
	SO _x (ppm)	15 ~ 60	20	10 ~ 100	
	PM (mg/m³)	-		65	
T (°C) R.T. ~ 1,100 R.T. ~ 850 R.T. ~ 650 R.T. ~ 350	T (°C)	R.T. ~ 1,100	R.T. ~ 850	R.T. ~ 650	R.T. ~ 350
GHSV (h ⁻¹) 30,000 ~ 100,000 30,000 ~ 100,000 30,000 ~ 100,000	GHSV (h-1)	30,000 ~ 100,000	30,000 ~ 100,000	30,000 ~ 100,000	
AFR 14.7 17 26	AFR	14.7	17	26	

Regulation for CO₂ Emissions

Carbon Tax

Country	Designated to:	Introduction Year
Finland	Carbon tax	1990
Norway	Carbon tax	1991
Sweden	Carbon tax	1991
Denmark	Carbon tax	1992
Netherlands	Environmental tax	1996
Germany	Electricity tax	1999
United Kingdom	Climate change tax	2001
Switzerland	CO ₂ tax	2004
Japan	Carbon tax	2006
New Zealand	Carbon tax	2007

☞ CO₂ emission trading

• 7 ~ 10 €/ton CO₂ @ European climate exchange (ECX)

40 ~ 60 €/ton CO₂ in 2013

- ca. 10 \$/ton CO₂ @ Chicago climate exchange (CCX)
- CAFE (Corporate Average Fuel Economy)
- ™ Mileage CO₂ emission rate

Future Regulations for Engine-out Emissions

Gasoline Vehicle Emissions Legislation

ECE (Economic Commission for Europe) EUDC (Extra Urban Driving Cycle) FTP (Federal Test Procedure)

HD Diesel Vehicle Emissions Legislation

PM Engine-out (g/bhp. h)

The Urgent Challenge of 2007/2010

