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§6.3 FRICTION FACTORS FOR FLOW AROUND SPHERES

In this section we use the definition of the friction factor in Eq. 6.1-5 along with the di-
mensional analysis of §3.7 to determine the behavior of f for a stationary sphere in an in-
finite stream of fluid approaching with a uniform, steady velocity v... We have already
studied the flow around a sphere in §2.6 and §4.2 for Re < 0.1 (the “creeping flow” re-
gion). At Reynolds numbers above about 1 there is a significant unsteady eddy motion
in the wake of the sphere. Therefore, it will be necessary to do a time average over a time
interval long with respect to this eddy motion.

Recall from §2.6 that the total force acting in the z direction on the sphere can be
written as the sum of a contribution from the normal stresses (F,) and one from the tan-
gential stresses (F;). One part of the normal-stress contribution is the force that would be
present even if the fluid were stationary, F,. Thus the “kinetic force,” associated with the
fluid motion, is

Fk': (Fn _Fs) +Ft =Ff0rm+ Ffriction (63'1)

The forces associated with the form drag and the friction drag are then obtained from
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Since v, is zero everywhere on the sphere surface, the term containing ¢v,/ 30 is zero.
If now we split f into two parts as follows

sin B)RZ sin §dfdé  (6.3-3)
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f = frorm + firiction (6.3-4)
then, from the definition in Eq. 6.1-5, we get
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The friction factor is expressed here in terms of dimensionless variables
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and a Reynolds number defined as
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Re = Zv=P _ ZR0=P (6.3-8)
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To evaluate f(;) one would have to know % and U, as functions of 7, 8, ¢, and .
We know that for incompressible flow these distributions can in principle be ob-
tained from the solution of Egs. 3.7-8 and 9 along with the boundary conditions

B.C.1: atf=1, 9,=0 and %,=0 (6.3-9)
B.C.2: ati =, 9,=1 (6.3-10)
B.C. 3: ati =, P=0 _ 6.3-11)

and some appropriate initial condition on V. Because no additional dimensionless
groups enter via the boundary and initial conditions, we know that the dimensionless
pressure and velocity profiles will have the following form:

P = P06, $, t; Re) v =v( 0, ¢, 1 Re) 6.3-12)
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When these expressions are substituted into Egs. 6.3-5 and 6, it is then evident that the
friction factor in Eq. 6.3-4 must have the form f(t) = f(Re, ), which, when time aver-
aged over the turbulent fluctuations, simplifies to

f=fRe) (6.3-13)

by using arguments similar to those in §6.2. Hence from the definition of the friction fac-
tor and the dimensionless form of the equations of change and the boundary conditions,
we find that f must be a function of Re alone.

Many experimental measurements of the drag force on spheres are available, and
when these are plotted in dimensionless form, Fig. 6.3-1 results. For this system there is
no sharp transition from an unstable laminar flow curve to a stable turbulent flow curve
as for long tubes at a Reynolds number of about 2100 (see Fig. 6.2-2). Instead, as the ap-
proach velocity increases, f varies smoothly and moderately up to Reynolds numbers of
the order of 10°. The kink in the curve at about Re = 2 X 10° is associated with the shift of
the boundary layer separation zone from in front of the equator to in back of the equator
of the sphere.

We have juxtaposed the discussions of tube flow and flow around a sphere to em-
phasize the fact that various flow systems behave quite differently. Several points of dif-
ference between the two systems are:

Flow in Tubes Flow Around Spheres
® Rather well defined laminar-turbulent e No well defined laminar—turbulent
transition at about Re = 2100 transition
* The only contribution to fis the friction =~ ® Contributions to f from both friction
drag (if the tubes are smooth) and form drag
* No boundary layer separation e There is a kink in the f vs. Re curve
associated with a shift in the separation
zone

The general shape of the curves in Figs. 6.2-2 and 6.3-1 should be carefully remembered.

For the creeping flow region, we already know that the drag force is given by Stokes’
law, which is a consequence of solving the continuity equation and the Navier-Stokes
equation of motion without the pDv/Dt term. Stokes’ law can be rearranged into the
form of Eq. 6.1-5 to get

E, = (wRA)Gp2 (————24 ) 6.3-14
k ( )(ZPU ) Dva 7 ( )
Hence for creeping flow around a sphere
24
= < (. o o4
f Re for Re < 0.1 (6.3-15)

and this is the straight-line asymptote as Re — 0 of the friction factor curve in Fig. 6.3-1.
For higher values of the Reynolds number, Eq. 4.2-21 can describe f accurately up to
about Re = 1. However, the empirical expression?

2
f= ( /% + 0.5407) for Re < 6000 (6.3-16)
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Fig. 6.3-1. Friction factor (or drag coefficient) for spheres moving relative to a
fluid with a velocity v... The definition of f is given in Eq. 6.1-5. [Curve taken
from C. E. Lapple, “Dust and Mist Collection,” in Chemical Engineers’ Handbook,
(J. H. Perry, ed.), McGraw-Hill, New York, 3rd edition (1950), p. 1018.]

is both simple and useful. It is important to remember that
f~044  for5 X 102 <Re <1 X 10° (6.3-17)

which covers a remarkable range of Reynolds numbers. Eq. 6.3-17 is sometimes called
Newton’s resistance law; it is handy for a seat-of-the-pants calculation. According to this,
the drag force is proportional to the square of the approach velocity of the fluid.

Many extensions of Fig. 6.3-1 have been made, but a systematic study is beyond the
scope of this text. Among the effects that have been investigated are wall effects® (see
Prob. 6C.2), fall of droplets with internal circulation,* hindered settling (i.e., fall of clus-
ters of particles’ that interfere with one another), unsteady flow,® and the fall of non-
spherical particles.”

Glass spheres of density py,;, = 2.62 g/cm’ are to be allowed to fall through liquid CCl, at
20°C in an experiment for studying human reaction times in making time observations with
stopwatches and more elaborate devices. At this temperature the relevant properties of CCl,
are p = 1.59 g/cm?® and p = 9.58 millipoises. What diameter should the spheres be to have a
terminal velocity of about 65 cm/s?
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