

Modified Wood: Sustainable and Durable

by: Waldemar J. Homan SHR Timber Research

Sustainable Technologies for the Production of Durable Wood

Restrictions of Wood

- Durability (resistance against biological attack of fungi and insects)
- Shrinkage and swelling
 - anisotropy
 - unequal swelling in greater dimensions
 - adhesion problems with paints
- UV-degradation
- Water adsorption and desorption

"Classical" Wood Preservation

- Mechanism toxicity (f.i. heavy metals)
- Disadvantages:
 - emissions during production
 - emissions during use
 - emissions after use (waste stage)
- New legislation
- Public image

Alternatives to "classical" wp

- Durable tropical hardwood species
 - sustainable forest management
 - quality of plantation grown wood
 - availability
- Shift to other materials
 - -pvc
 - steel
 - aluminium
- Alternative treatment methods

Alternative treatment methods

- Lumina filling resin treatments
- Cell wall filling resin treatments
- True modification of the cell wall

Wood structure and Distribution of the chemical components within the woody cell wall

Cell lumen

Cell wall

Association of cellulose, polyoses and lignin

Chemistry of the components

Cellulose

- Long chains of anhydroglucopyranose
- Native cellulose
 DP 3.500 12.000
- Fibrils
- Crystallinity and amorphous zones

Mechanism of water uptake

hydrogen bonds between two cellulose surfaces

Resin treatments

 Filling lumina no penetration of cell wall

 Bulking penetration of cell wall cavities

Modification of Wood

- Chemical alteration of cell wall polymers
 - Substitution of OH-groups
 - Cross linking
 - Degradation of polymers (undesired)

Etherification of wood

Etherification of wood:

- a. with methylchloride
- b. with an epoxide

Esterification of wood

Wood-OH +
$$R$$
 OH R Wood-O R + H_2O

Esterification of wood:

- a. with a carboxylic acid
- b. with an alkylic anhydride

Silanisation of wood

Silylation of wood with an alkylsilane

Wood

Hydrolysis
$$R-Si(OR)_3 + 3 H_2O \longrightarrow R-Si(OH)_3 + 3 ROH$$

3 R-Si(OH)₃ Condensation HO-Si-O-Si-O-Si-OH OH OH OH OH
$$\stackrel{R}{\rightarrow}$$
 R R R R R

Reaction of wood with an alkoxysilane (according to Goethals et al., 1996)

Urethane treatments

Wood-OH + R-N=C=O
$$\longrightarrow$$
 Wood-O N-R

Reaction of wood with a mono-isocyanate

Resin treatments

- Non modifying
 - alkyds
 - acrylates
 - epoxides *
 - melamine
- Modifying
 - DMDHEU
 - epoxides *

Acetylation

WOOD-OH +
$$H_3C$$
 O WOOD-O-CH₃ + H_3C OH

Sorption curves of acetylated **SHR** wood

Soft rot resistance of acetylated wood

(hydro) Thermal treatment The Process Principle of the "Plato process"

A two steps process:

1 hydro-thermolysis

drying

2 curing

165 °C - 185 °C

conventional

170 °C - 190 °C

Selectively reorganizing the chemistry of wood

The Plato process chemically

Improved wood properties

- High durability (fungi, insects)
- Reduced shrinkage and swelling
- UV-stability
- Strength properties (both + and -)
- Reduced EMC

⇒ LOWER MAINTENANCE

State of the Art 2002

- Laboratory research
 - reaction kinetics
 - mechanism of activity
 - ultrastructural research
 - adaptation of test methods

State of the Art 2002

- Search for chemicals / processes
 - complexity
 - by products / co products
 - toxicity (human / eco)
 - price
 - technological feasibility

State of the Art Europe 2002

- Commercial treatment plants:
 - Thermowood (SF, > 10 production sites)
 - Plato (NL, constructed, restart)
 - NOW, Perdure (F, producing)
 - Acetylation plant (NL, blue print)
 - Other processes (NL, 3 plants in 2003)

Future of modification

- New research networks
- New networks with industry

EU Network "wood modification"

www.woodmodification-network.org

From technology push to market pull

- Up-scaling
- Commercialisation:
 - co-operation chemical process industry and wood industry

Production of high quality and durable wood products with wood harvested from sustainable managed forests of the moderate zones

- Up-scaling
- Commercialisation:
 - co-operation chemical process industry and wood industry

Production of high quality and durable wood products with wood harvested from sustainable managed forests of the moderate zones