A Vision of Food Packaging in Metal Cans

Aaron L. Brody
President and CEO
Packaging/Brody, Inc.

For Presentation at International Metal Decorators Association Willow Brook, Illinois 20 April 2004

Food Preservation

- Prolongation of safety and quality of food products
 - Refrigeration
 - Chilling
 - Freezing
 - Drying
 - Water activity control
 - Chemical additives
 - Combination technologies

Preservation processes using heat in conjunction with other technologies to control microbiological, enzymatic, and biochemical changes – mostly.

- May also include food/beverage preservation by combination technologies, e.g., carbon dioxide, water activity, mild heat, etc.
- May also be applied for dry and controlled water activity products

- Acidity or pH.
 - Less than pH. 4.6 high acid
 - Fruity/tomato products
 - Few to new pathogenic microorganisms more sensitive to heat
 - ☐ Can be sterilized by temperature less than 212° F.
 - Greater than pH. 4.5 low acid
 - Meat, fish, dairy, vegetable products
 - Can contain microbiological pathogens
 - Less sensitive to heat
 - ☐ Sterilization at temperatures above 212° F.
 - Regulated

- ☐ High Acid (less than pH 4.6)
 - Hot fill
 - Product heated outside of package
 - Product filled hot into package
 - Package sealed
 - Product cooled
 - ☐ Steam within package condenses
 - Partial vacuum
 - Pressure differential

Multilayer Barrier Plastic Can

- Low Acid (greater than pH 4.5)
 - Product filled
 - Package hermetically sealed under vacuum
 - Package heated to >212° F.
 - Pressure and differential
 - □ Rate of temperature increase
 - Slowest heating point reaches specified temperature
 - Static of agitating
 - Product within package cooled to retard further cooking
 - Permanent records must be maintained
 - Product generally overcooked, relatively low quality

- □ Dry
 - Coffee: roasted and ground
 - Steel cans
 - Bright pack with oriented polyproylene film labels
 - Lithographed
 - □ Plastic cans
 - Folger's high density polyethylene
 - Composite paperboard cans
 - Other food products
 - Baking powder

Decorative Steel Can

Steel Package

Shaped Steel Package

Shaped Steel Coffee Can

Spiral Wound Paperboard Composite Canister

Plastic Can for Roasted and Ground Coffee

- Controlled water activity
 - Syrups
 - □ Steel
 - Steel with plastic pour spout
 - □ Plastic
 - Edible oils
 - Offshore on F cans with plastic fitments

F-Style Steel Can for Edible Oil

Steel Can with Plastic Dispenser Closure

- Aseptic
 - Product sterilized outside of package
 - Continuous heat exchanges
 - Cooled before filling
 - Package sterilized independently of product
 - Superheated steam
 - Chemicals
 - □ Other
 - Product and package assembled under sterile conditions
 - Delivers better quality than hot fill or retorted
 - Can be used for almost any package structure
 - Decoration need not be thermally resistant Decoration need not be thermally resistant

Aseptic Steel Cans with Shrink Film Labels and easy open Aluminum Closures

Tetra Prism Aseptic Paperboard Composite Carton

Barrier Plastic Aseptic Package

Aseptic Barrier Plastic Package

Aseptic Paperboard Composite Canister

Hypa Pak Aseptic Paperboard Composite Can

- Package structures
 - Glass jars/bottles
 - Metal cans
 - □ Steel
 - Aluminum
 - Metal trays
 - Plastic cans
 - Plastic bottles/jars
 - Plastic trays
 - Flexible pouches
 - Paperboard composites
 - □ Spiral wound cans
 - Brick shaped cartons

- ☐ Glass jars/bottles
 - Transparent, inert, heat resistant
 - Declining in importance
 - ☐ Heavy
 - □ Fragile
 - Energy intensive
 - Severely cannibalized by plastic jars/bottles

- Metal cans
 - Aluminum
 - Almost always two piece with easy open ends
 - Majority in United States/Canada
 - □ Carbonated beverages
 - Internally pressurized
 - Impacted by polyester bottles

- Aluminum
 - □ Beer
 - Internally pressurized
 - Very low oxygen
 - Most are heat pasteurized
 - Slight market penetration by barrier polyester bottles
 - □ Some applications for aseptic beverages Europe

- □ Steel
 - Three-piece
 - □ Tin free steel
 - Welded side seam
 - □ Increasingly (40+ %) one end is full panel easy open steel
 - Campbell's single strength soups
 - Contoured
 - Low acid retorted
 - High acid hot filled
 - Narrow end seam
 - Reduced diameter
 - Requires stronger steel alloy

Shaped Steel Can

Shaped Steel Can – with peel open top

- Metal
 - Shallow draw
 - Rectangular
 - Round
 - □ Seamed closure
 - Peel off opening
 - Tapered for nesting
 - Bottles
 - □ Screw-off closure
 - Hot fill

Peel Open Closure on Shallow Draw Aluminum Can

Aluminum Bottle

Aluminum Bottle

- Aluminum
 - Shaped
 - Embossed
 - Surface texture

Shaped Coca Cola Cans

Aluminum Bottles

Embossed Aluminum Can

- Plastic for wet foods
 - Multiwall barrier
 - Two piece
 - Metal closure
 - Full panel
 - Plastic closure
 - Friction heat sealed
 - Full panel opening
 - Contains oxygen scavenger
 - Shallow
 - Undulating walls
 - To facilitate microwave penetration

Microwaveable Barrier Plastic Can

- □ Plastic for wet foods
 - Cup style
 - For sipping
 - Decoration separate expanded polystyrene label
 - Applied after retorting
 - □ Thermal insulator
 - Decoration on surface of polystyrene

Retort Plastic Can for Sipping

Let Pak Retort Plastic Cans

- Plastic/metal
 - Insert injection molded
 - Metal
 - □ Plastic
 - Coated steel
 - Polyester film
 - Laminated
 - Extrusion coated
 - Decoration on film exterior

Insert Injection Molded Plastic/Aluminum Can

Polyester Film Lined Steel can – Diamond Surface

- □ Issues
 - Rigid metal
 - □ Thermal resistance
 - Pressure resistance
 - Low acid
 - Regulatory compliance
 - Thermal transmission
 - High acid
 - Pressure resistance
 - Counterpressure

Food Cans

- Decoration
 - Traditional paper label
 - Newer: three piece
 - Decorate in flat
 - Increasing proportion of two piece food
 - Decorate in round
 - Plastic labels
 - Increasing full body shrink film labeling
 - Higher gloss
 - □ Sharper graphics

- Alternatives to metal can for high acid
 - Flexible laminations
 - Pouches
 - Pillow
 - Stand-up
 - Consumer size
 - Food service
 - □ Hot fill
 - Increasingly for tomato products
 - Barrier flexible trays

Hot Filled Stand Up Pouch

Hot Fill Polyester Bottle

Hot Fill Barrier Plastic Cup

- □ Alternatives Low acid
 - Retort pouches
 - Laminations
 - Aluminum foil
 - Silica (glass) coated polyester
 - Four-side seal style
 - Stand-up style
 - Consumer sizes
 - Pet foods
 - Tuna fish
 - Rice
 - Poultry

Retort Pouches

- Advantages
 - Reduced thermal input
 - Better quality
 - Flavor
 - Color
 - Texture
 - Theoretically reduced cost because less mass
 - Increased graphic surface

Retort Pouches

Retort Pouches

- □ Issues
 - Regulatory compliance
 - Actual pouch cost
 - Assurance of hermetic seal
 - 100 % inspection required
 - Relatively slow speed equipment
 - □ Special retorts required
 - □ Limited capacity
 - Distribution stacking strength
 - □ Shelf display

- Alternatives
 - Retort trays
 - Multilayer barrier plastic
 - ☐ Flexible closure
 - Peel off
 - Consumer sizes only

Retort Trays

- Advantages
 - Reduced thermal input and so better quality
 - Potential for reduced cost
 - Ready-to-heat-and-eat
 - Products
 - Pet foods
 - Entrees

Retort Tray

Retort Barrier Plastic Tray

Retort Trays

- □ Issues
 - Regulatory compliance
 - Actual package costs
 - Relatively slow speed equipment
 - Assurance of hermetic seal
 - Inspection required
 - Limited capacity
 - Shelf display

Retort Tray

Food Canning: Low Acid

- Alternatives
 - Retortable barrier plastic cans
 - □ Largely for microwavable cans
 - Very few cylindrical shaped plastic cans
 - Retortable barrier plastic bottles
 - Very few
 - Require metal closures

Retort Barrier Plastic Can

Retorted Barrier Plastic Bottle

- Alternatives
 - Retort carton
 - Composite paperboard
 - □ Brick shape
 - Retorted
 - □ Compact unit pack
 - □ Decoration surface
 - □ Tetra Pak Recart
 - Hot fill carton/can
 - Composite paperboard

Rekart – Retort Composite Paperboard Carton

- Alternatives
 - Aseptic
 - Low acid
 - Particulate
 - Approved by regulatory authorities for one product
 - No commercial applications in United States
 - Each product/package integer must receive separate approval
 - No equipment in place

Aseptic

- Ohmic resistance heating
 - Requires aseptic packaging
 - No commercial equipment in United States
 - Excellent quality

- Alternative Thermal
 - Microwave/steam
 - Outstanding quality
 - Barrier plastic tray
 - Very short thermal cycle
 - No commercial equipment in United States
 - Hurdle technologies
 - Campbell's Tomato Soup
 - Polyester jar

Polyester Bottle+Hurdle Technology

- Alternatives
 - Spiral wound composite paperboard carton
 - Largely wet shelf stable, controlled water activity and dry products
 - ☐ Tested for:
 - Aseptic
 - Hot fill high acid
 - Retort

- Alternatives non-thermal
 - Ultra high pressure
 - Electrical pulse
 - High intensity light pulse
 - Ionizing radiation
 - Gamma ray
 - □ X-ray
 - Electron beam

- Enhancements
 - Self-heating
 - Cans
 - □ Trays
 - Pouches
 - Self-cooling
 - □ Freon
 - Water evaporation
 - Carbon dioxide release

Self Heating Package

Food Can Enhancements

- Easy-opening
 - Button: Dot-Top
 - Peel open plastic "dot"
 - Releases vacuum
 - Removable/reusable closure
 - Peel off
 - Double seam closure with peelable flexible adhered

Silgan Dot.Top Vacuum Release for Easy Open Steel Can

Peel Open Double Seam Can Closures

Easy Open Can Top

Microseam Can

- Enhancements
 - Active Packaging senses change and alters properties
 - Moisture controllers
 - Oxygen scavengers
 - Odor removers
 - Aroma enhancers
 - Antimicrobials

Intelligent Packaging

- Senses change and signals
 - Location
 - ☐ RFID
 - Spoilage
 - Pathogens
 - Quality
 - Nutritional value

Food Canning: The Future

- Bottles/Jars
 - Glass will continue to decline as a food and beverage package
 - Plastic will continue to increase
 - Polyester
 - □ Barrier polyester
 - Silica coated
 - Thermoset coated
 - Ethylene vinyl alcohol
 - Oxygen scavengers
 - Multilayer polypropylene
 - Ethylene vinyl alcohol barrier material

Food Canning: The Future

- Metal cans
 - Aluminum for beer and carbonated beverages
 - Static little growth
 - Cannibalization by polyester bottles
 - Steel for beverages
 - Declining
 - Polyester bottles
 - Steel for cans
 - Static to declining
 - Product quality
 - Competitive structures

Food Canning – The Future

- Metal can alternatives
 - Plastic cans
 - Increasing modestly
 - Retort pouches
 - Increasing rapidly
 - Represent only tiny fraction of total
 - Retort trays
 - Increasing
 - Miniscule fraction

Food Canning – The Future

- Metal can alternatives
 - Hot fill pouches
 - □ For food service
 - Number ten can replacement
 - Possibly 40 % of number ten cans have been replaced
 - □ Largely for tomato products
 - □ Some consumer size applications
 - Tomato products
 - Cheese sauces, etc.

Hot Filled Stand Up Pouch

Food Canning: The Future

- Alternatives to canning
 - Chilled
 - Cook/chill
 - Sous vide
 - Hurdle technology chilled
 - All increasing rapidly
 - Represent major proportion of packaged foods

Food Canning: The Future

Strategy should be to focus on food packaging and not on cans per se.

- Within metal cans, focus on tomorrow's technologies
 - Shapes
 - Plastic coated
 - Plastic/metal composites
 - Easy open

Shaped Three Piece Steel Can

Tapered Can for Empty Nesting

Instant Custom Decoration

A Vision of Food Packaging in Metal Cans

Aaron L. Brody
President and CEO
Packaging/Brody, Inc.

For Presentation at International Metal Decorators Association Willow Brook, Illinois 20 April 2004

